
¢

t

" " PRELIMINARY" "UNPUBLISHED_ DATA
Space Sciences Laboratory

University of California

Berkeley, California N63 23649

Series No. 4 --
Issue No. _ _"9

NASA Research Grant NsG 150-61

Principal Investigator: Charles W. Tobias

2<'i_.

i/i/

Technical Report

DYNAMIC ANALYSIS OF A ONE DIMENSIONAL POROUS ELECTRODE MODEL

by

Edward A. Grens II

(Ph.D. Thesis)

OTS PRICE"

September 1963



Space Sciences Laboratory

University ofZCalifornia _, J',>",_-_/
Berkeley 4, California /

/

,f_" ./__ Ser_s_11>_ 4_ .___
- Issue _. _,_ )

-q "__

C>f _

_ASA _ Gr 6_ ×,,
_4'p,.s,_ c_--_._._vs.;__I_7.s. _'/-_,. _ ,._ 3 "'_" y,_ '/

Principal Investigator. Charles W. Tobias

_YNAMIC ANALYSIS

Technical Report

OF-A ONE--DI_NS-i_DNAL PORou,$--ELEcTRO-DE MODEL_ .. _-L'"

by

Edward A. Grens II

_Ph.D. Thesls)_

/,
/ //

//"/

/"
/i

1.1 /

//

/
/

/

/
/

\
\

x Sept_ 1965



DYNAMIC ANALYSIS OF A ONE DIMENSIONAL POROUS ELECTRODE MODEL

Edward Anthony Grens II

Department of Chemical Engineering

University of California, Berkeley, California

A one dimensional model is developed to represent flooded

porous electrodes in which there is no bulk flow of electrolyte

in the pores. In this representation the pore configuration

is ignored and the entire electrode treated as a homogeneous

macroscopic region of electrolyte with distributed current and

species sources. Mass transport in the electrolyte by diffu-

sion and migration is considered. No assumptions of uniformity

of electrolyte conductivity or composition are made. The m_el

is capable of incorporating electrode reaction overpotentlal

expressions of quite arbitrary nature.

Analysis of the model is conducted by numerical techniques

to furnish descriptions of electrodebehavior for both steady

state and transient operation. Performance characterization

includes electrode overpotential and current and concentration

distributions as functions of current drain and system para-

meters. The computational procedure is implemented on digital

computingmachinery.

Examples based on the cadmium anode in SN KOH and on the

ferri-ferrocyanlde electrode in 2N Na0H are investigated. In

these examples overpotential relationships incorporating both

forward and reverse reaction terms are used and the inade-

quacies of approximations to these relationships are

demonstrated. 7_ jt_ i/
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i. INTRODUCTION

The operation of electrochemical cells requires that a

heterogeneous reaction involving charge transfer occur at

the interface between the electrolyte phase and the electrode.

Since the rate of such a reaction per unit interfacial area

is limited by the kinetics of the reacting system, the total

rate of reaction for the electrode, and thus the electrode

current, is dependent upon the extent of the interface. There-

fore, electrodes with extended active surface, usually in the

form of porous solids, find wide application, particularly in

electrochemical energy conversion devices. It is important

to be able to characterize their behavior.

A porous electrode consists of a connected matrix of an

electrically conducting solid material (or mixture of materials)

interspersed with connected voids, or pores, the characteristic

dimensions of which are small compared with the overall size

of the electrode. Such a matrix may be formed by compaction

or sintering of granular material, by selective dissolution

of a heterogeneous solid, or by mechanical shaping and construc-

tion. The voids or pores of the electrode are filled in part

or completely with the electrolyte solution, in certain cases

a portion of the pore volume being occupied by a more or less

connected gas phase. Electrical contact is made by appropriate

means to the electrode matrix and the exterior surfaces of

the electrode are maintained in contact with the bulk electro-

lyte (and gas phase if one is involved). This arrangement



is illustrated schematically in Figure i where an electrode

without gas phase (flooded) is shown in (a), one involving a

gas phase in (b).

The electrode reaction takes place almost exclusively

in the pores, the external surface area being small with

respect to pore wall surface° The primary chemical reactant

may be supplied in the solid matrix, in the electrolyte, or

in the gas phase, if present. The first-mentioned source of

supply is appropriate to batteries (primary or secondary);

the second and third to fuel cells° The reaction product may

also occur in either the solid, electrolyte, or gas phases.

The reaction is distributed over the walls of _Je pores, the

rate at any point being dependent upon the conditions of

potential, species concentration_ etc., prevailing at that

location. In turn, the potential and species concentrations

at any point in the electrode are governed by the processes

of transport of current and species, respectively, to and

from that point Thus, in principle, the rate of reaction at

any position in a porous electrode, conveniently expressed

as rate per unit volume or transfer current per unit volume,

can be determined from the conditions to which the electrode

is subjected. Knowledge of distribution of electrode reac-

tion, at any time, is necessary for complete characterization

of electrode behavior.

_e _e__. of the _e___...._.._ _e_._,_ _ctrodes

is of considerable interest, because a knowledge of their

behavior under varying conditions of operation is essential
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Figure I. Representative Porous Electrode

Sections. On order of 10 4 actual size.
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to rational design and construction of those electrochemical

systems which contain such electrodes as elements. Devices

making use of these electrodes include all batteries of

current commercial importance as well as most other electro-

chemical energy conversion techniques under investigation or

in development. One need only cite such widespread applica-

tions as the lead-acld and nickel cadmium storage batteries,

the silver-zinc and other primary batteries, and the vast

majority of fuel cell types as examples.

With emphasis being placed on high energy density

electrochemical devices, as for space vehicle applications,

and upon perfecting of practicable fuel cell systems, the

need of reliable methods of analyzing porous electrode be-

havior becomes increasingly important. The wide variety of

systems involved and the range of parameters to be considered

indicates that something more than a purely empirical approach

is desirable. Theoretically based prediction techniques for

characterization of the performance of such electrodes are

necessary. Such methods of analysis as have been presented

in the literature to this time are largely valid only for a

very limited set of systems, and then only under steady state

conditions. Procedures are required which are applicable to

a large variety of electrode systems and which treat dynamic,

as well as static, electrode operation.

i.I Problem Description

It is the purpose of this dissertation to define a model

for the flooded porous electrode, and from analysis of this
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model to develop a procedure for characterizing the dynamic

behavior of the electrode, subject to a set of parameters

defining system conditions.

In investigating porous electrodes, the consideration

of the actual geometrical configuration of the matrix (or

equivalently, of the pores) would lead to overwhelming com-

plexity. Since most such configurations are highly random,

the very characterization of the pore geometry is extremely

difficult. Extensive simplification would be necessary_

turning to consideration of specific, idealized geometrical

arrangements (eog., cylindrical pores). Although models based

on such simplified configurations are possible_ and in some

ways convenient, another approach has been adopted in this

study: that is the utilization of the one dimensional porous

electrode model. In this model the configuration of the

porous body is ignored, and the entire electrode is treated

as a homogeneous macroscopic region of electrolyte with a

distributed current (and reacting species) source or sink

representing the reaction occurring at the electrode-elec-

trolyte interfaces. All gradients perpendicular to the over-

all direction of current flow (parallel to the face of the

electrode) are disregarded. Thus a representation for the

porous electrode is derived in which the variables are func-

tions of only one space dimension_ that normal to the electrode

face. This model is well suited to the investigation of the

distribution of current and species concentration in depth

in the electrode, and of the gross overpotential of the
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electrode. It is a valuable approximation which is amenable

to theoretical treatment. It should be noted that the one

dimensional model can be applied to situations in which

idealized geometry in fact exists, for instance to cylindrical

or fissure type pores, so long as the transverse dimensions

of electrolyte containing portions of the structure are small.

For the one dimensional model to have validity, it is

required that the electrode be macroscopically uniform and

that characteristic dimensions of the matrix structure

(e.g., grain size) be small compared to distances over which

there is significant variation in concentrations or potential.

That is to say, an averaging over the local complexities of

the system must be permissible. Because of the very small

pore dimensions in most electrodes of interest ( of micron

order), these conditions quite commonly exist. Then the one

dimensional approach should be fully as valid as any con-

sidering a highly idealized pore geometry in two (or more)

dimensions.

This nature of model has been treated quite extensively

in the literature 4"7-13"15-19 but always under additional

restrictions. These include assumptions of uniformity of

species concentrations and electrolyte conductivity, of

unrealistically simple local overpotential expressions, and

of absence of migration of reacting species. Each such sim-

plification reduces the range of cases covered, sometimes

to the extent that no real systems are even approximately

described. However, interesting qualitative conclusions
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can be, and have been, drawn from such restricted models°

1.2 Previous Work

Previously published work devoted to analysis of

behavior of porous electrodes can be divided into treat-

ments applying to flooded systems and treatments of gas

electrodes. Only the former will be considered here. These

investigations are almost entirely based upon some type of

analysis of a one dimensional model, as described above,

although in several instances the true nature of the model

was apparently not recognized. In a few cases experimental

results are cited to confirm certain aspects of the results

of the analysis, but no successful empirical characterization

of distribution of reaction in a porous electrode has been

published.

The principal contributions to the analysis of flooded

porous electrodes are reviewed briefly in this section.

The basic assumptions involved and type of results obtained

are described, although the results themselves are not re-

produced. Limitations upon applicability of the treatments

are evaluated where results are of such a form that they

might be applied to characterization of electrode performance.

The papers are mentioned chronologically, except for a few

cases where several related articles of a single author are

grouped.

Fischbeck and Einecke 1"2'5" In the consideration of electro-

chemical reduction of solid materials in the late 1920's,

Fischbeck and Einecke were led to the examination of the
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porous nature of their electrodes, and the possible effects

of such nature, by the unusual behavior of certain chromite

electrodes. They discussed the phenomena only briefly and

in the context of a solid matrix of sufficiently low con-

ductivity so that its particles acted as intermediate

electrodes. No attempt at analysis was made_ but they recog-

nized the significance of local conductivity and overpotential

and observed and commented on non-uniform distribution of

reaction in porous electrodes.

Daniel-Bekh4: Daniel-Bekh, in 1948, initiated a series of

investigations of porous electrodes in the Soviet Union. He

defined a model which embodies most of the features of the

one dimensional approach used in this present investigation.

Specifically, he represented the electrode by parallel current

paths, in the solid and in the electrolyte, each characterized

by a constant conductivity. Current transfer between the

paths, that is electrode reaction, was governed by an unspeci-

fied overpotential relation, with the overpotential assumed

a function of transfer current only. Then the t_ansfer cur-

rent at any point along the path was shown to be proportional

to the second derivative of the potential difference between

the paths at that point. Danlel-Bekh developed this model

for plane and for cylindrical electrode configurations. He

realized that species concentration would not be constant

in the pores of the electrode but dismissed this effect with

a vague reference to accounting for it by use of diffusion

potentials.
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In order to use this model to characterize current

distribution in the electrode, Daniel-Bekh relied on

experimentally measured potential distributions for the

electrodes, rather than introducing overpotential expres-

sions in his equations and directly calculating distributions.

These potentials were measured by use of a Luggin capillary

probe inserted in the electrolyte in a 0.3 mm hole drilled

into the porous electrode. Although this method eliminates

the requirements for known overpotential relationships and

for difficult mathematical operations, it is unsatisfactory

for several reasons: the accurate measurement of the poten-

tials is very difficult; the presence of the hole and the

probe (inserted from the face of the electrode) destroys the

electrode structure and creates a false environment at

the point of measurement; and the double differentiation of

an empirical potential curve introduces additional gross

errors. In spite of its shortcomings, this work represents

a valuable contribution through establishing the essential

features of the one dimensional model.

Coleman 5"6" In a paper published in 1946, Coleman presented

a model for current distribution in the porous cathode of

the Leclanch$ cell. This was essentially one dimensional

in nature and was based upon application of Kirchoff's Laws

to a current path. The path proceeds from one point in the

matrix, through the matrix to another such location, then

over into the electrolyte and, in this phase, back to the
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starting point (there transferring again to the matrix).

Coleman considered his matrix as made up of two kinds of

particles, carbon black which carried the current and MnO2

at which transfer took place, and assigned a constant conduc-

tivity to each, as well as to the electrolyte. However, he

ignored any consideration of the local overpotential at the

point of current transfer and investigated his model only

for the unlikely cases of uniform potential and of uniform

current distribution in the electrode. In a later paper (1951)

Coleman described the results of experiments in which Leclanch_

type cathodes were divided into three sections (plates i cm

thick) each provided with a connection for passage of current.

Through external resistors various matrix resistances were

simulated and current distribution (among the three sections)

measured. A modification of the earlier Kirchoff's Law model

was applied to this three-section case but experimental and

calculated results were not in agreement. These treatments

are principally of historical interest and contribute little

to the progress of porous electrode analysis.

Ksenzhek and Stender 7'8'9'I0" A series of articles by Ksenzhek

and Stender during the years 1956 and 1957 analyzed the be-

havior of a porous electrode containing electrolyte of a

uniform concentration. Initially during the consideration of

specific surfaces of porous electrodes and their measurement,

these authors developed a one dimensional model with uniform

electrolyte conductance (and no matrix resistance), utilizing
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an overpotential relationship with transfer current propor-

tional to hyperbolic sine of overpotential. 7 From this

model an approximate expression for gross electrode over-

voltage as a function of time (for periods short compared

to charging times) was derived. Shortly thereafter the

analysis was extended to predict current distribution in a

porous electrode of infinite thickness at steady state for

the same model.8 Later the model was reinterpreted as

applying to the interior surface of a tubular electrode,

although in fact it was not modified at all, and solutions

for local overpotential for an applied sinusoidal alternating
9

current were derived. This interpretation permitted experi-

mental verification by use of the interior of a nickel

plated metal tube as the working electrode, measuring local

overpotential with a capillary probe inserted into the tube.

Agreement of results with the theory was quite good, but

the size of the tube used (about 8 mm) precludes any real

comparison with porous electrode behavior. In the final

paper in this group, Ksenzhek derived an equivalent activa-

tion energy for the overall porous electrode reaction from
i0

the steady state results previously obtained.

This work constitutes a considerable advance in the

one dimensional treatment of porous electrodes. Here, for

the first time an overpotential relationship is used in the

eq_v_ _stem. The approach is, however, severely limited

by the assumption of uniform species concentrations in the

electrode, a condition that is obtained only on initial
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completion of a circuit or under AC loading° The transient

results are likewise applicable only to sinusoidal or initial

transient loadings. These conditions are not compatible

with studies of behavior of electrochemical energy conversion

devices but may be encountered in certain types of investi-

gations of porous media.

ii
Perskaya and Zaideman : The porous electrode in which

reactant is supplied entirely by diffusion in the electrolyte

was examined by Perskaya and Zaideman. A redox type over-

potential was used and anodic and cathodic diffusion currents

assumed equal. The analysis led to a gross overpotential

relationship for the porous electrode which was further sim-

plified to an equivalent electrode transfer resistance at

vanishing electrode current, given as a function of electro-

lyte resistance, diffusion limiting current, and overpotential

parameters. This transfer resistance was compared with

good agreement with experimental results measured for Fe 2+,

Fe 5+ system in acid solution.

Euler and Nonnenmacherl2: The treatment by Euler and

Nonnenmacher, published in 1960, employed the same basic

one dimensional porous electrode model as the previous authors

but, for the first time, indicated the assumptions inherent

in its use. The primary concern of these authors was the

carbon-Mn02 porous electrode and this sytem served as a

source of parameter values in their development. Constant

conductances were assumed for the matrix and for the electro-

lyte. Effects of species concentration variation in the
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electrolyte were disregarded, and the overpotential rela-

tionship was represented by an equivalent transfer resis-

tance (linear overpotential). For this model analytic

solutions were derived and several examples calculated.

Because of the emphasis in application to carbon-MnO 2 elec-

trodes, the effect of low conductivity electrode matrices

was stressed.

Euler and Nonnenmacher also described their measurements

of gross overpotential of thin carbon-Mn0 2 electrode layers

and presented results extrapolated to a vanishingly thin

electrode. This extrapolated behavior was used to calculate

the effective "volume conductivity" for transfer current

which served as the basis of their overpotential relationship

in the theoretical analysis. No comparison between calculated

and measured results was possible because of dependence of

calculated overpotential on the polarization parameter

(selected from empirical results).

This article, although not basically different from those

of Ksenzhek and Stender 7'8'9, presents a clear derivation

of the one dimensional model for the case of uniform elec-

trolyte concentration. The resulting expressions for steady

state current distribution clearly illustrate the effects

of electrolyte and matrix conductivity. The value of these

results is, however, somewhat limited, since they are based

on the use of a "volume conductivity" which is constant,

independent of transfer current density, although the pub-

lished measurements demonstrate the strong dependence of this
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"conductivity" on transfer current. Nevertheless, the

authors' insight into the nature of the problem makes a

significant contribution to the investigation of porous

electrode phenomena.

Buvet, Guillou, and WarszawskilS: Buvet and his coauthors

presented an extensive discussion of porous electrode reac-

tions and a classification of these reactions based on method

of reactant supply. They went to considerable effort to jus-

tify the existence of a non-uniform transfer current distri-

bution in a porous electrode and then developed a one

dimensional electrode ("column electrode") model for the case

of constant conductivity of the electrolyte (the matrix is

taken as nonresistive) and uniform species concentrations in

the electrode. Two types of overpotential relationships were

considered, a step function (zero or constant) overpotential

and a linear overpotential expression. Both cases were solved

for expressions giving gross overpotential for the electrode

and potential distribution in the electrolyte.

The essential results of this work are mere restatements

of those of Euler and Nonnenmacher 12 for electrode matrices

of no resistance.

Eulerl4"15: In a study characterizing the pore dimensions

and surface area of Mn0 2 electrodes, Euler examined the effec-

tive electrical capacitance of the electrodes for various

frequencies of applied alternating current.14 In this appli-

cation concentrations of species in the electrolyte were
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constant since no direct current was passed. The result

of primary interest in connection with porous electrode

analysis is the value of the time constant for surface

capacitance effects, measured at around lO -5 sec. Another

investigation by Euler, this time into alteration off the

potential profile in porous electrodes (again Mn02) during

discharge, was based on a one dimensional model with the

assumption of uniform current distribution. It was then

assumed that current distribution changed from some initial

distribution (as from e.g. Euler and Nonnenmacher 12) to the

final uniform condition with a "buildup" of this profile.

The course of this development was not analyzed. An experi-

mental model consisting of a one dimensional network of

resistors and Leclanch_ cells was developed and the altera_

tion of current distribution among the branches of this net-

work used to simulate behavior of porous electrodes during

discharge.

Ksenzhek 16"17' Extending his earlier work with porous elec-

trodesT,8 9,10' , Ksenzhek considered two further special

cases of the one dimensional porous electrode model. In

considering diffusion controlled electrodes, he assumed

reactant supply by diffusion from the surface of the elec-

16
trode nearer the counterelectrode . He further assumed

conditions of operation whereby the potential in the elec-

trolyte within the pore structure was essentially constant.

Thus the analysis of the distribution of current in the

electrode reduced to that of distribution of a heterogeneous



chemical reaction in a porous material (with potential as a

parameter of the rate expression) and results from this

field were introduced. Ksenzhek also recognized the con-

current effect on electrode behavior of the transport of

reactant from the bulk of the solution through an effective

diffusion layer on the surface of the electrode. Results

were developed as gross overpotential curves for electrodes

of various specific surface areas and as effective depths of

penetration of reaction into the electrode. In discussion

of the applicability of his steady state solutions, Ksenzhek

explored the relation between time constants for electric

charging of surface capacitance and for diffusion supply

of reactant, showing the time for the former effect to be

on the order of 10-3 to 10 -7 times that for the latter.

Investigating polarization of thin porous electrodes

Ksenzhek extended his earlier results 8 for the one dimen-

sional electrode with uniform electrolyte concentration to

the case where electrode thickness is not large compared to

the depth over which significant reaction takes place 17.

He defined a measure of porous electrode efficiency as the

ratio of current drawn at a porous electrode to that which

would pass at a smooth electrode of same superficial area

at the same gross overpotential. The results of this study

were given as relations for this efficiency and for elec-

trode current as a function of electrode thickness and

overpotentlal.

Although these investigations are somewhat specialized

and restricted in application by the assumptions involved,

2O
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Ksenzhek has clarified to a considerable extent the general

nature of porous electrode performance at steady state.

Wlnsell8: The electrode model developed by Winsel was the

single pore of circular cylindrical configuration in a

material of high conductivity. The electrolyte within the

pore was assumed to have constant conductivity. The author

defined and discussed this model for a general overpofiential

relationship at the pore wall, deriving a representation as

a system of integral equations. In developing solutions to

these equations, however, Wi_sel used variables averaged

over the pore cross section, a procedure equivalent to the

assumption of a one dimensional model. Cases considered

included electrodes with uniform electrolyte concentration

and redox type overpotential expressions, as previously

treated by Ksenzhek and Stender 7, and electrodes with over-

potential relationships which can be represented by an inter-

facial resistance, as developed by Euler and Nonnenmacher 12.

.Winsel also considered the effect of pre and post-transfer

reactions, although solutions for these cases were not com-

pleted.

The treatments,of certain non-steady state phenomena

were also presented: namely, the application of alternating

current to porous electrodes and the discharge of an elec-

trode with a uniform (and constant) electrolyte composition

but a condition of the pore wall which varies with time.

These investigations of transient effects can be considered

off a preliminary nature only.
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In his lengthy paper, Winsel presented several new

and interesting approaches to analysis of porous electrode

performance. Computational difficulties repeatedly

limited the effectiveness of the approach.

Newman and Tobiaslg: The one dimensional pore model with a

resistive matrix was analyzed by Newman and Tobias in an

extension of the work of Euler and Nonnenmacher 12. In this

steady state treatment a Tafel type overpotential expression

was utilized instead of the linear relationship used in the

earlier study cited. The model and its inherent assumptions

and limitations were fully discussed and solutions derived,

both for the case of uniform electrolyte concentration and

for the case of binary electrolytes° In addition, approxi-

mate solutions were developed for electrodes in which con

concentration variations occur but where electrolyte conduc-

tivity remains uniform.

This work is the clearest exposition available of the

nature of the one dimensional model. The principal limi-

tation of the steady state analysis presented is its restric-

tion to Tafel type overpotential relationships, which lose

validity at any point in the electrode where transfer cur-

rents become small.

1.3 Scope of Investigation

The development and analysis of a one dimensional porous

electrodemodel which is undertaken herein is intended to

unify and extend the results of the previous steady state
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treatments and to provide descriptions of transient behavior

in porous electrode systems°

The one dimensional model here developed, within the

limitations of all one dimensional approximations, is appli-

cable to all flooded porous electrodes in which no forced

convection of electrolyte exists and for which the resis-

tivity of the electrode matrix is negligible. The develop-

ment involves no limitation to electrolytes of uniform, or

constant, concentrations or conductivities. The relation-

ships between transfer current, electrode potential, and

local species concentrations which are employed in this study

are considered reali _ and _ _--^o_ _epresen_±v_ of the current

knowledge in electrode kinetics; no fundamental restriction

is placed upon adoption of any such relationship based upon

a rate limiting charge transfer step. However, throughout

this work, as in essentially all previous investigations,

no account is taken of any variation of the properties of

the electrode matrix with extent or rate of electrode

reaction.

The consideration of dynamic behavior in porouselec-

trodes is undertaken in the context of phenomena that occur

over times significant in a charge or discharge cycle

(tenths of a second to many hours) and not in the restrictive

(and except for certain measurements, unrealistic) sense of

_1_d al_r_ng currents of the e_s _ e_,,,__conds

of discharge. Thus the effects of variations in electro-

lyte composition with time are explored.
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In comparison with the previous work cited in Section

1.2, this study represents an increase in the generality of

treatment with respect to the nature of electrolyte systems

considered and to the characterization of the electrode

reaction rates° It restricts electrode materials to those

of low resistivity, a limitation not present in certain other

analyses. No previous treatment of the transient phenomena

is known.

The present investigation involves no experimental

verification of the theoretical results. Moreover, currently

no reliable measurements of current distribution in porous

electrodes are available. Thus, in a sense equally appli-

cable to previous treatments, this work must be considered

the analysis of a model only; an analysis which may, however,

approximate the behavior of many real systems to the extent

they can be portrayed by the model.
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2. FORMULATION OF POROUS ELECTRODE MODEL

2.1 Transport Phenomena in Electrolyte Systems

The characterization of the processes occurring in a

flooded porous electrode must be based upon the description

of the transport of mass and charge in the electrolyte

filling the pores of the electrode, and of the kinetics of

the electrode reactions occurring at the pore walls. The

latter phenomena is discussed in Section 2.4; it essentially

consists in the specification of an overpotential expression

relating reaction rate (or transfer current) to the condi-

tions prevailing at the locality in question. Transport

effects in electrolyte solutions have been discussed in

considerable detail in many books and articles; perhaps the

work of Levich 20 presents as clear a development as any.

The pertinent transport concepts are presented below in

application to the electrolyte in the pores of an electrode.

The electrolyte solution within the pores of the elec-

trode (and that exterior to the electrode) is composed of

an undissociated solvent and various dissolved species,

which may be either charged (ionic) or uncharged. At any

position in this electrolyte the concentrations of the

various species, cj (mols/cm3), and the potential, ¢ (volts),

are necessary to describe the solution at that point.

The potential may be specified with respect to any arbitrary

reference; here this reference is taken as the constant

potential of the electrode matrix. In this electrolyte the
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flux, Nj "'(mol/cm2-sec), of any species, J, isthe vector

expressed in terms of the gradients of concentration and

potential at any point as

Nj = -Dj V cj - zjcujcj V ¢ + vcj , (2.1-1)

where: Dj = diffusion coefficient of species J (cm2/sec)

zj = charge number of species J

c = electronic charge (1.60 x l0 -19 coul)

uj = mobility of species J (cm/sec-dyne)

v = vector hydrodynamic velocity (cm/sec)

The three terms on the right-hand side of this equation

represent, respectively, flux components arising in diffu-

sion under a concentration ( more correctly chemical poten-

tial) gradient, migration under a potential gradient, and

convection by bulk fluid movement. The electric current in

the electrolyte, i (amp/cm2), is carried by the charged

species and may be related to their fluxes.

i__= F _, zjNj (2,1-2)

J

where: F = Faraday's constant (96,500 coul/equiv).

The potential at any point in the solution must be

related to the local charge density by Poisson's equation

where :

_¢_ F _,
- T' zjcj (2.I-5)

c' = permittivity of the electrolyte solution

I 92 p

_cou_ /erg-cm#. However, except in the electric double

layer at the surface of an electrode, charge separation is
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not significant in the solution; that is, the local charge

density is never appreciable. Therefore, as is done in

almost every study of electrolytic transport phenomena,

electroneutrality is assumed. This electroneutrallty assump-

tion is expressed as

_zjcj = (2.1-4)
0

J

and serves to replace the Polsson equation (2.1-3) in the

description of the system. It should be noted that this

assumption is no___tequivalent to replacing the Poisson equa-

tion by the Laplace equation, V2¢ = 0, since the constant,

F/c', in equation (2.1-3) has a very large value, on the

order of l018 volt-cm/coul in units consistent with the

expressions given above.

For conservation of species J, the continuity relation

can be written

3cj
-v " +Sj

where: t = time (sec)

Sj = species J source term (mol/cm3-sec).

This source term represents a production of the species and,

barring homogeneous chemical reactions in the body of the

electrolyte, is zero except at the electrolyte-electrode

interface where the electrode reaction takes place. Here

the source can be related to the reaction rate, or rather

to the transfer current density, is, for the electrode reac-

tion. In transition to a one dimensional model, this source

term represents the pseudo-homogeneous reaction in the one

(2.1-5)
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dimensional space, which accounts for the electrode reaction

at the interface.

A general reaction may be expressed as

zj
• vjNj _ - ne

where :
vj = stoichiometric coefficient for species J

Mj = chemical symbol for species J

e = chemical symbol for 1 mol of electrons.

Here the number of Faradays of charge passed per mol of

reaction, n, is given by

(2.1-6)

n : _0 zjvj , (2.1-7)

where the summation is over the N species present in the

electrolyte. Then the source for speclesmj is

avj i s (2.1-8)
Sj = nF

where a = surface area per unit volume (cm2/cmS). In the

absence of significant capacitive effects (see Appendix I)

i sthe transfer current, , also represents the sink in a

conservation equation for charge

0 = - V " i + Si (2.1-9)

where the current source is then

Si = - al s. (2.1-10)

Thus the source of any species, J, can also be represented

in terms of the divergence of current in the electrolyte

vj
Sj : _ V " ! • (2.1-ii)
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Furthermore, the overpotential expression mentioned

earlier as a description of the kinetics of the electrode

reaction can, in general, be represented by a relationship

of the type

is : f (_,cj,_) • (2.1-12)

If the expressions for component flux, equation (2.1-1),

and those for the source terms, in form (2.1-11), are sub-

stituted into the continuity equations (2.1-5) for each

species, then a system of conservation equations, one for

each species, J, is derived.

v-(Djvoj)+ zj v-(ujcjv ) +
j:I,..o,N (2.1-15)

This system of equations, together with the electroneutrality

condition

zjcj = 0, (2.1-4)

serves to describe the transport phenomena taking place in

the electrolyte. With a suitable overpotential expression

V " L = - af(@,cj'z) (2.1-1.4)

the transport processes occurring in the electrolyte under

isothermal and isobaric conditions are completely

characterized.

2.2 Basic ASsumptions for PorousElectrode Model

The characterization of _rocesses occurring within the

electrolyte in the pores of a porous electrode (and at the

electrode surface) which has been stated in Section 2.1 is,
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in theory at least, sufficient for complete solutions for

the dynamic behavior of the system. However, the equations

(2.1-15) which describe transport in the electrolyte are of a

nature such that no analytic solutions are possible and numeri-

cal analysis is impractical for realistic cases. Moreover,

as indicated in Section 1.1, the configuration of the regions

over which (2.1-15) are to be applied is not subject to any

practicable mathematical description for real porous bodies.

In addition, other data for application of these equations,

notably diffusion coefficients, Dj, and mobillties, uj, for

various species as functions of solution composition and poten-

tial gradient are not available. Therefore, certain simplifying

assumptions must be made in order to permit analysis of the

system and prediction of electrode behavior. These assumptions

define the model treated in this dissertation within the already

stated general consideration of flooded porous electrodes.

Three basic assumptions, or limitations of considerations,

have previously been mentioned. These are:

1. The electrode can be descrlbed by a one dimensional

approximation. This requires that all gradients

perpendicular to the overall direction of current

flow (direction of distance int____othe electrode) be

negligible; that the electrode be macroscopically

uniform; and that the charaqteristic dimensions of

the pore structure be small compared to distances

over which there is significant variation in concen-

tration or potential. By thisassumption the pore

electrolyte can be treated as a one dimensional



51

region of electrolyte with a distributed homogeneous

reaction representing the actually heterogeneous

electrode reaction.

2. There is no hydrodynamic (bulk) flow of electrolyte

in the pores. This assumption requires that no flow

be impressed by an applied pressure gradient and that,

further, any changes in electrolyte volume accom-

panying the electrode reaction generate no significant

fluid velocity. It should be noted that if a signi-

ficant flow is introduced by exterior means, the

transport of reactant (and product) will be largely

by forced convection, the convection term in equation

(2.1-15) becoming dominant even at extremely low

velocities (order 10-4 cm/sec).

5. The matrix is isopotential. This condition prevails

for porous bodies of high (metallic) conductivity

and is approximately satisfied as long as the solid

phase conductivity is large compared with that

representative of the electrolyte. Many, but

certainly not all, porous electrodes satisfy this

condition.

Further assumptions of a fundamental nature are introduced

at this time. They are:

4. Transport parameters, that is diffusion coefficients

and mobiilties, are constant, independent of concen-

tration, over the ranges of variables encountered in

the electrode. At the high electrolyte concentrations
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•

•

encountered in most important electrolytic cells,

this assumption is certainly not satisfied (nor even

approximately satisfied). It is dictated by the lack

of adequate knowledge of the behavior of the properties

of concentrated electrolytes and further by the diffi-

culty in using any complex expressions for the

Rarameters in equations (2.1-13). All known treatments

of porous electrodes, and of other electrolytic trans-

port problems, have been forced to employ the assump-

tions. It certainly can impose a limit upon the

degree to which the model represents an actual electrode.

The electric double layer can be considered as part

of the electrode matrix and its effects accounted for

in whatever overpotential relationship is used. Given

an appropriate overpotentlal expression (see assump-

tion 7) this condition is very well satisfied so long

as pore dimensions are large compared to the double

layer thickness (order lO -7 cm); that is, so long as

the double layer occupies only an insignificant por-

tion of the pore cross section.

The solid phase of the porous electrode (the matrix)

undergoes no significant modification in the course

of the process considered; that is, its properties

do not change with the amount of current passed nor

with the condition of the adjacent electrolyte. Such

an assumption is necessary to provide a well defined

model of any generality but must be considered a
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serious limitation. In most batteries, as opposed

to fuel cells, very significant changes in the solid

phase d__9_ooccur during charging or discharging. No

means of describing this effect is known and many

aspects of this phenomena are little understood.

7. The relationship between local electrode reaction

rate (transfer current) and conditions prevailing

at that locality can be satisfactorily represented

by an overpotential expression of the form (2.1-12).

This requires a reaction whose rate depends only upon

species concentration in the electrolyte and poten-

tial difference between the electrolyte and the

matrix. If assumption 6 is met, then this situation

will ordinarily follow for flooded systems (no gas

present). It is further assumed that such over-

potential expression is known.

8. The effect of transport phenomena in the electrolyte

exterior to the porous electrode can be accounted for

by an equivalent "transfer layer" (diffusion layer)

expressed as a thickness of electrode structure

within which no electrode reaction can occur. This

assumption presupposes known solutions of exterior

"convective-dlffusion" problems and their translation

into the terms specified. It imposes no essential

limitation upon the model.

9. The electrolyte is isothermal. This assumption is

truly valid only at low current drains. It allows
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avoiding the problems of heat transfer, whichare

usually dependent on factors exterior to the elec-

trode itself.

The assumptions enumerated above define a model for

the porous electrode which will be developed in detail ih

the next section. Further assumptions will be made, from

time to time, in the course of the analysis, but they will

not be basic to the development of the model. The validity

of the fundamental assumptions as applied to any real elec-

trode will determine the applicability of the results of

this analysis to that electrode.

2.5 Development of One Dimensional Porous Electrode Model

The assumptions of Section 2.2 define an idealized

porous electrode which may be regarded as a one dimensional

region of electralyte throughout which a current and species

source is distributed. The strength of this source at any

point is given by equation (2.1,8). The region, which repre-

sents the electrode, will be described as extending in the

single significant direction, y, from y=0 at the face of

the electrode to y=_ cm at the plane of symmetry (or sealed

termination of the electrode). The face of the electrode

has another one dimensional region of electrolyte, without

species or current sources, adjoining to it; this represents

the equivalent transfer layer and extends from y=0 to y=-5 cm.

Beyond the transfer layer in the negative y direction is the

completely mixed bulk electrolyte and the counterelectrode,

both exterior to the consideration of this model. The
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arrangement Just described is depicted in Figure 2.

For the one dimensional _prOximation with constant

transport par_eters and no _drodyn_ic flow (assumptions

i, 2 and 4) equations (2.1-13) become

= Dj + zjcuj _ (cj ) + _

where ¢ is the potential in the solution less the ass_ed

constant potential of the matrix, i.e., the electrode poten-

Similarly, (2.1-14) becomes

8i - af(¢ cj)

tial.

•

From the description of the model in the first para-

graph of this section, the side conditions for equation (2.3-1)

can be formulated. Initially, before any electrode reaction

has taken place, the bulk electrolyte is unaltered in the

pores; thus the initial condition is:

At t = 0: cj = c_ (2.3-3)

o is bulk concentration of species J. In the bulk
where cj

electrolyte the concentrations remain unaltered. Thus

the condition exists:

At y = -5: cj = c_ (2.3-4)

Also, at the face of the electrode, so at the face of the

transfer layer, the current density in the electrolyte must

be the total current density applied.

At y = -5 and at y = 0: i = i* (2.3-5)

where i* = applied current density in pore electrolyte

(amp/cm2). At the plane of symmetry (or equivalent
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termination) of the electrode the condition of symmetry must

be met. This is expressed as:

At y = _: _ = _ = 0; i = 0 . (2.3-6)

Within the accuracy of assumed constant transport

parameters, the Nernst-Einsteln relation can be introduced

(for a discussion of the applicability of this expression

see Harned 21),

: _ (2.3-7)
uj kT '

where k = Boltzmann constant (1.58 x l0 -6 ergpK)

T = Absolute temperature (°K)

Substituting (2.3-7) in (2.5-1) and noting

£ F

kT RT '

where R is the gas constant,

_cj _cj+ z_j_ (_c__ _?_ _ _ _ _-_
t-_-_-- = Dj dy _ T-_+ cj _-//+ _--_- -_- .

and, applying the same treatment to equation (2.1-2) for the

current

l?
Equations (2.3=2) through (2.5-6) and (2.3-8) now charac-

terize the model. Thus the problem reduces to the analysis

of this mathematical system.

The equation system can now be more conveniently treated

if put in dimensionless form. Moreover, such a transforma-

tion yields groupings of parameters that reduce the number

of independent parameters whose influence may be studied.
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A suitable transformation for this model is:

y =Y

Dkt

_2

Cj 0

c k

(2.3-1o)

F(¢-¢ e )
¢ =

RT

where Ce is the equilibrium electrode potential at bulk

electrolyte oomposition and the component designated k

is a convenient non-reacting species present in large concen-

tration in the bulk solution. With this transformation

the following dimensionless parameters appear:

oC o
ck

i*_ 5
_ o;A=_

nF D k ck

The equation system representing the electrode model then

becomes

1 3C. _Cj _+ 8I

zjCj = o
J

J=I,N

31 ,®,_j,---p cj)BY = - a fl _ _ (¢, (2.3-13)

where the function, p, representing the overpotential ex-

presslon is also cast in a form which involves the
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arranged, with nondimensionalization, to the form:

8_ : . 1 (2 5-14)
BY B + zj.j .

These equations have the side conditions, transformed from

(2.3-3) through (2.3-6):

At x = 0: Cj = 7j (2.5-15)

Y = -A: Cj = 7j

Y= 0: z i (2.3 16)

Y = i: = B'_Y= 0; I = 0. (2.3-17)

The conditions on current represented by (2.5-16) and

the right=hand expression of (2.3-17) can be combined in an

alternate form by integrating 8I/8Y over Y = 0 to I. Then

the restriction appears as

B-Y dY = p (¢,Ci)dY : 1. (2.5-18)

2.4 0verpotential Expressions

The present analysis strives to maintain considerable

generality in the exact nature of the relationship between

local reaction rate and the conditions existing at the point

in question. This must be accomplished subject to the res-

trictians imposed by assumption 7, that the rate may be

expressed in the form

i s : f (*,cj) (2.4-1)

where transfer current, is , is used as a measure of rate.

59



Of course, factors other than those considered in (2.4-1)

may influence local electrode reaction rates. However, the

current state of knowledge of electrode kinetics for most

reactions is such that no characterization, even under near

ideal conditions, is well established. That is to say,

even when conditions are such that the influence of factors

such as electrode hlstory_ state of aggregation, presence

of traces of catalytic or inhibiting compounds, etc., is

absent, usually no unequivocal rate relationship is known°

The mechanisms of most reactions are poorly understood.

Thus the overpotnetial expressions available are, for the

most part, empirical results expressed in forms consistent

with some assumed mechanism.

It should be noted that even if electrode reactions

were satisfactorily desqribed for local plane surfaces with

known histories, application of these descriptions to porous

electrodes might be tenuous due to inhomogeniety of matrix

materal and changes in material properties during the process

of the reaction. Really, the overpotential expression used

must represent the electrode reaction as it occurs at a

matrix-electrolyte interface within the porous electrode.

The development of such information is a field of study re-

quiring considerable emphasis. As stated under the basic

assumptions of this model, a valid expression of type (2.4-1)

w_]] h_ regarded as known for this investigation.

The analysis that is undertaken in Chapter 3 requires

no further supDosition concerning the nature of the rate

40
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expression. However_ for application to the calculation

of behavior of specific electrode systems, the function f

must take some definite form. For utilization in example

calculations in this work two forms of overpotentlal expres-

sions, which are in wide usage, have been selected. One of

these is the Tafel type expression,

Cr exp [RT_-._- ($-$e)] , (2.4-2a)i s = i o • --6
C
r

where i o = exchange current density (amp/cm 2)

= transfer coefficient (between 0 and l, usually

about 1/_ )

_on_en_ra _ionB e = equilibrium electrode potential at bulk _ _ *

and where the subscripts r and p refer to reactant and

product, respectively, for the reaction considered (2.1-6).

The other form is the redox (or Erdey-Gruz or Volmer) type

formula,

[_nF
i s = io_ _ exp JR--T--(¢-¢e )]

<C r

_ Cp ex p [(_-l)nF (___e)]} (2 4-2b)
c° RT "
P

Both of these expressions apply to reactions first order in

reactant. The Tafel form corresponds to an electrode reac-

tion which may proceed in one direction only, or to reactions

at transfer current densities high compared with their ex-

change current density. The redox formulation is applicable

to systems considered "reversible". An extensive discussion

of the basis of these and other overpotentlal expressions,

as well as of electrode kinetics, in general, is given in

Vetter 22. While these relationships are certainly subject
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to the difficulties and limitations mentioned earlier, it is

felt that they are realistic considering the current state

of knowledge of kinetics for electrode reactions. For most

reactions in flooded electrodes the redox form should be

preferred. These expressions are much better descriptions

of the vast majority of reactions than any linear approxima-

tions (equivalent resistance)* and correspond to the forms

chosen in the b_tter work previously published (Tafel by

Newman and Tobias 19, redox - for the special case of uniform

concentration and a=½ - by Ksenzhek and Stender 7'8 and by

Ksenzhekl6"17). More accurate relationships should, of

course, be used if available for any system being investigated.

Application of the transformation of Section 2.3

(2.3-9) to the expressions (2._-i) and (2.4-2) gives, for

the Tafel case

.s Cr
1 = i m exp [_n¢] (2._-3)

o 7r

and for the redox relationship

i s = io _--_ exp [_n¢] -CP exp [(a-l) n¢]} (2.4-4)
Tp

Then converting to the form of equation (2.3-13) and intro-

ducing the dimensionless parameters

For comparison purposes only, a linearized form of (2.5-1)
for vanishing transfer current density (and inVabsence of

concentration overpotential) is also used in some calculations.

This is ionF
is = RT (¢-¢e)

and involves the further assumption of a=0.5. It is com-

parable to expressions used by Euler and Nonnenmacher 12, and

by certain other previous investigators.



a_2i
¢: o x= i

nFDkC k

(2.4-s)

81
the expressions for _-_ = -p(¢,Ci)_ _ become

Tafel :
81 Cr

=-X _rr exp [cm¢]
(2.4-6)

Redox: -8-_=-X exp [cm¢] -Cp exp [(ct-l)n¢]
Tp

(2.4-7)

Although a general overpotentlal function will be used in

a large part of following developments, the redox type ex-

pression will occasionally be utilized to illustrate the

adaptation of the treatment to particular rate relationships.

4:5

2.5 Significance of Variables and Parameters

Before proceeding with the analysis of the one dimen-

sional porous electrode model, it may be well to examine

the relation of variables and parameters used to describe

the system to quantities normally measured for electrolytic

processes. There are many ways in which the model may be

related to the physically measurable system. The choice

among these should be on the basis of having exact corres-

pondence between as many variables of the model and their

measurable counterparts as is possible.

In order to relate the model to measured physical quan-

tities, certain characteristics of the porous electrode must

be defined. For this purpose consider the structure shown

in Figure i as a series of separate channels or individual

pores as illustrated in Figure 5. Then a tortuosity factor,

_, can be defined as the ratio of average path length through
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Electrode Structure.
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a pore, _, to matrix thickness, _', and a divergence angle,

e, as the average angle made by the pore axis with the direc-

tion perpendicular to the electrode face. Also the average

fraction of a section of the porous solid, taken parallel

to its face, that is void (i.e., consists of pores) can be

defined as the porosity, P. Then the effective electrolyte

area perpendicular to the direction of the pore axes is

P cos e per unit superficial cross sectional area.

To a good approximation, at least within the domain

of cases established by the assumptions of the present model,

the properties of the electrolyte within the pores are iden-

tical_ to those of bulk _!ectro!yte_ at similar _o...pos_ivn.m_.

That is, the presence of the pore walls does not signifi-

cantly affect the transport parameters of the constituents

of the solution as long as the double layer occupies a

negligible portion of the pore cross section. Accordingly,

the transport of species in the one dimensional model may

be compared to that in an average pore along the path of

the pore. In any such comparison the concentrations in the

model must be referred to electrolyte volume only, in order

to correspond to bulk concentrations at the boundary and at

initial time. Therefore fluxes must be referred to elec-

trolyte cross section area alone. If primed symbols repre-

sent superficial (referred to to_al frontal area) flows,

i.e., those that would be measured,

N !

J
Nj = p cos e

i' i*'
i = P cos e ; i* = p cos e

(2.5-i)

(2.5,2)
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Moreover, the model boundaries must be expressed, in terms

of macroscopic distances 8' and £'

£ = _ £, ; 5 = o_ 5, . (2.5-5)

With these adaptations, the bulk transport parameters hold

for the model, and the only effect of the pore structure

appears in the first two transformations of (2.3-9) where

£' must replace £, and in the parameter, 8, which becomes

i*'_ £'B = .5-4)
nF DkC_P cos O

in terms of normally measured values.

If the overpotential relationships of Section 2.4 are

to be compared to those measured for elementary plane sur-

faces, the parameter _ becomes

a _ £,2

_ ,'m

i P cos O
0

nF DkC _

where i° is the exchange current determined for the elemen-

tary plane. It must be re-emphasized here, however, that

such comparisons are not to be recommended in view of the

strong influence of surface conditions (and local configura-

tions) on overpotentlal properties. Measurements should be

made, as mentioned earlier, for the matrix concerned.

In the above comparison the applicability of the assump-

tions of Section 2.2 are, of course, assumed. Without this

condition the model loses significance and no comparisons

of its parameters to reality is possible. However, minor

deviations from certain of the assumptions may, in some

cases, be compensated for by changes in values of certain

(2.5-5)
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quantities entering the model. Thus the effect of a pore

structure not homogeneous on a small scale, but rather

possessing repeated pore narrowings or restrictions, may

be compensated to some extent by variation of the diffusion

coefficients used. The influence of certain portions of the

pore wall to which transport is unusually difficult may be

balanced by reduction of the specific area value, a. Each

such situation requires special consideration; in many

cases suitable adjustment may be possible but this is not

necessarily to be expected. Nor is it a concern of this

dissertation to examine at length cases not corresponding

to the model developed.
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3. ANALYSIS OF POROUSELECTRODE MODEL

3.1 The Problem of Analysis

The one dimensional model for flooded porous electrodes

parabolic partial differential equations (2.3-11), for the

N species present in the electrolyte, together with the

restrictions imposed by the electroneutrality condition

(2.3-12) and the side conditions (2.3-15,17,18). Substi-

tuting the given overpotentlal function, p(¢,Cj), into the

appropriate equations, the system appears as

= +÷ + j,,,,J+÷ (+.l-m)

for J = I, ..., N (note subscript, i, in fuctlon p(¢,Ci) runs

from 1 to N) with

_zj Cj = 0 (3.1+2)
A-_J

J

and

= 7j= cj Iy=__Cj I_=0

=B._I =o (3.1+-3)Y=l Y=l

p(¢,Cl) dY = 1.

Since the relation (3.1-2) can be used to express any dimen-

slonless concentration, Ck, in terms of the other C_'s,J

this system appears as N parabolic equations (3.l-l) with

appropriate side conditions (3.1-3) involving N-1

developed in Chapter 2 is represented by the system of N
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concentration variables, Cj, and the potential variable, _, as

functions of Y and T. In principle at least, solutions can

be derived for this system giving the variation of concen-

trations and potential, and thus electrode reaction rate,

with position and time.

Unfortunately, the partial differential equations (3ol-1)

are non-linear, the non-llnearities occurring in the second,

and in most cases the third, terms on the rlght-hand side.

No analytic solutions are possible. Further, the non-

linearities exist in very significant (and frequently dominant)

terms. Thus solutions of approximate, linearized equations

corresponding to (3oi-i) will not, in most cases, yield

results valid for thismodel. For solutions to this system

of equations, recourse must be made to numerical techniques.

The application of numerical analysis to the system of

equatlons of this model encounters several significant diffi-

culties. While the treatment of linear parabolic equations

by finite difference methods is a reasonably well developed

field, particularaly when coefficients are time independent

(see Forsythe and Wasow 25, for example), very little has

been established concerning the analysis of non,linear

problems (except for a few very special cases). No methods

of demonstrated convergence and stability which are applicable

to this problem have been described, at least to this inves-

..... | .............tigator s knowledge. In fact, even if considerat_oo _

limited to the system of ordinary differential equations

representing the model at steady state (equations (5.1-1)



with set to zero), proven numerical methods are not

available.

This situation has led to an "empirical" approach to

the numerical analysis problem; that is, methods have been

formulated based upon the principles of finite difference

analysis and upon expected behavior of the solutions to the

equation system; these methods have been repeatedly modi-

fied (or completely reformulated) in accordance with the

performance of the method applied to the present model.

In this manner the numerical procedure described herein has

been developed. It is found to yield solutions for the equa-

tions of the one dimensional porous electrode model over

wide ranges of input parameters. The convergence of this

procedure cannot be established, nor can its stability,

except for those cases to which it has been applied. The

application of this procedure to any other problems (systems

of equations) must be undertaken with considerable caution°

Nevertheless, it appears to be a powerful tool in predicting

the performance of porous electrodes satisfying the assump-

tions of this work°
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3.2 General Numerical Procedure

The general numerical procedure developed in this inves-

tigation is outlined here. Details of the method and its

implementation are discussed later. Of course, the procedure

is actually carried through with high speed digital computing

machinery and is designed with this in mind, but the method
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is not, in principle, restricted to this form of execution.

The partial differential equations (3.1-1) are first

put in finite difference form in terms of increments of the

independent variables Y and T. At each time step (at each

value of T), starting from the initial conduction, the system

is then represented by a set of simultaneous, non-linear,

algebraic equations involving values of the variables from

the preceding time step. This equation set is solved by

assuming starting values of all quantities appearing in non-

linear terms and finding revised estimates of these quanti-

ties by solution of the then linearized equation system,

continuing the procedure iterative!y until convergence is

obtained. The calculation then proceeds to the succeeding

time step where the same process is undertaken. Solutions

are also obtained (by the same method) for the steady state

problem. When the time step calculations yield results

satisfactorily close to the steady state condition, the

problem is terminated.

In using this method, convergence of the iterative

procedure at each time step can only be attained if the

overpotential expression, p(¢,Ci), is put in a form such

that any linear dependence of p(¢,Ci) upon the Cj of the

equation concerned (3.1-1) is separated. Thus the expression

becomes

p(¢,C i) = CjAj(¢,Ci) + Bj(¢,Ci) (3.2-i)

where the terms Aj and Bj will be different in the different

equations of (3.l-l). The nature of these terms for the
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overpotentlal types discussed in Section 2.4 is developed

in Appendix II. The reason for this procedure lies in the

magnitude sometimes assumed by coefficients of any Cj in

p(¢,Ci) and in the basic requirements of convergent itera-

tions in non-llnear systems(see Lapidus24). It should be

noted that Aj and Bj may include the variable Cj which is

then given its value from a preceding iteration in their

evaluation.

It is also convenient to replace one of the conservation

equations (3.l-l) with the differential expression for poten-

tial (2.3-14) in cases where the reactants and products

constitute a very small fraction of the current carrying

species present in the electrolyte. The conservation equa-

tion deleted in thls Instance is that for the species k.

This procedure must be avoided in cases where ionic species

participating in the reaction conBtitute the largest part

of current carriers in the electrolyte; under these condi-

tions use of (2.3-14) leads to instability.

Many aspects of the numerical calculations procedure

used were dictated by computational requirements (as com-

puter storage limitations) and economics (computer time

utilization). Variations of the method are, of course,

possible.

3,3 Finite Difference Representation

Transformation to finite difference representation is

made by considering the space variable, Y, divided in incre-

ments, h, and the time variable, _, divided in increments, gi"
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The space increments will be constant (h = constant), but

the time steps are variable (see Section 3.4). Then if

J is designated as the index for Y and K the index for T,

the relations

Y(J) = (J - 1)h -_, (3.3-i)
K

• (K) -- Z gi (3.5-2)
i=l

exist, the second reducing, for constant increments, g, of

T to

•(K)= Kg

Thus the index J runs from 1 to L, where L is given by

I+A
L= h + 1

and has a value, LF, corresponding to Y=0 which is

LF=A+ I .

(3.3=3)

(3.3-4)

(5.5-5)

The index K runs from 0 to some unspecified upper-limit.

The values of the dependent variables in finite differ-

ence representation are those existing at a point in Y -

space corresponding to integral values of the indices J

and K. Thus these dependent variables become discrete,

indexed, sets of values

Cj (J,K)

(J,K)

for Cj at Y(J), T(K)

for _ at Y(J), _(K) •

(3.3-6)

In putting the partial differential equations (5.1-1)

in finite difference form, representations of space deri-

vatives of error order h2 have been chosen. These are



54

82U]I = U(J-I,K) - 2U(J,K ) + U(J+I,K) + 0(h 2)

]J,K h2

3U l = U(J+I,K) - U(J-I,K) h2J,K 2h . + 0( ) • (5.3=8)

For representation of the time derivative the form

3U I = U(J,K+I) - U(J,K)

IJ ,K+½ ' g
+ O(g 2) (3°5-9)

is used, which, it should be noted, is of order g2 only for

a point midway between index K and index K+I. In the above

U represents any dependent variable. Naturally other finite

difference forms could have been chosen for the derivatives

(perhaps with smaller error terms), but the same order

should be maintained for the errors of the _ and terms*.

Implicit finite difference representations for the

parabolic equations are necessary to maintain the stability

of the solution in proceeding from time step to time step.

In order to obtain symmetry about the point of evaluation of

the time derivative, the Crank-Nicholson symmetric form has

been chosen 25. It must be mentioned, however, that there

is some argument over the necessity, or even desirability,

of such a choice 26.

The modified form of the overpotential expression

(3.2DI) is substituted in equation (3.1-1) giving

That is, the form

/:

8U IJ,K = U(J+I,K)h- U(J,K) + 0(h)

should not be used with (3.3=7).



55

TrjvJ_ (CjAj(_,Ci) + Bj(_,Ci)) o (5.5-10)

Then such equations for all species save k (recall that k is

a nonreacting species present in large concentration)

yield finite difference equations in the Crank-Nicholson

symmetric form

U g(K) =

+ zj

(J-I'K)-2Cj (J,K)+Cj (J+l,K) 1

h2 ]

Q(J,K)cj(jK)+ zj_<J,K>IcJ(J+I'K)-cJ(J-1'_)_]
h2 " 2h 2_h

where :

- VVj_ [Aj(J,K)Cj(J,K)+Bj(J,K)]I

+ _ h2

+ zJQ(J'K-1)Cj(Jh2 'K-I)+zJP(J'K-1)[Cj(J+I'K-I)-Cj(J-I'K-1)]2h2h

[Aj (J,K-I)Cj (J,K-1)+Bj (J,K-1) ]_

_v_g_

_j

P(J,K) = _(J+I,K) - @(J-1,K)

Q(J,K) = ¢(J-I,K) - 2¢(J,K) + @(J+I,K)

(3.5-11)

(3o3-12)

If, for simplicity in representation, the terms are defined

vjg(K)

Xj (K) = h2

(3.3-13)
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F (JKI:[[ zjP(  KII]C (JI,KII
2

+ [zjQ(J,K-1)-TjAj(J,K-1) + _- 2] Cj(J,K-1)

+ [l+zj P(J'K-1)]CJ(J+l'K-1)4 - TjBj(J,K-1))

then equations (3.3-11) may be expressed as

P -21 Cj (J,K)l-zJ P 4

[i P(J'K)]cj+ +zj 4 (J+I,K) = Fj(J,K) + TjBj(J,K) (5 3-14)

which have the limit conditions from (5.1-3)

Cj(I,K) = Cj(J,0) = Tj (5.3-15)

Cj(L-I,K) = Cj(L+I,K)

In the above equations Aj(J,K) and Bj(J,K) are zero for

J • LF since this represents the region in the equivalent

transfer layer where no reaction can take place. For J = LF,

the values of Aj (LF,K) and Bj(LF,K) calculated from the

overpotential expression must be multiplied by a factor

1 P(LFtK)
_+ zj 8

to account for the absence of species source on one side of the

position J = LF(see Appendix III). When the expression for

Fj(J,K) (3.3-15) is compared to the equation for Cj (3.5-14)

for one earlier time step, then a recursion relation for

Fj(J,K) becomes apparent,

'" _' (kj--_ 2 }Cj(J,K-i), (3 3-i6)Fj(J,K) = - Fj[J,K-±) - 2 + Xj(K-I)

which can be used in calculating Fj(J,K) at each time step
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except K -- I.

to be

The value in the latter case is easily shown

Fj(J,I) = j - zj _--7j Bk(J,0) 2xj_Tvj . (3.5-17)

7,where _=constant concentration conductivity= zjvjTj/n_.

J

For the species k, equation (3o3-i0) can be put in a form

oriented to consideration of ¢ as the primary dependent variable,

noting species k does not react,

_._2¢ 1 3Ck _k_ 1 _2Ck._. 1 _Ck

ck\_ + _ Y_-_v÷ % _ /= zk _ - (3.3-_8)

Then, if a variable

¢* = ¢ - ¢IY=-A ; ¢*(J) = _(J) - ¢(1) (3o3-19)

is defined, the finite difference approximation for (3.5-18)

can be written in the symmetric form as

Ck(J'K)2 {[_*(J-1,K)-P._,(J,K)+_*(J+I,K)]h2

+ 2 h2 '

+ R(J2hK-1)[¢*(J+I,K-I)-¢*(J-I,K-I)].'_h. + S(J,K-I)}h2

_
zk g(K)

(3.3-20)

where : R(J,K) =

S(J,K) =

Ck ( . _ T _ _ /-_ _ ,,-_Jt_,K/-_k

Ck(J,K)

Ck(J-I,K)-2Ck(J,K)+Ck(J+I,K)

(3.3-21)
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Rearrangement and definition of the term

zk

2 ) Ck(J,K_l)+ Xk(K )zk

gives the finite difference expression for ¢*(J,K)

[i- R(J'K)]_*(J-I'K)-2_*(J'K)+4 [i + R(J'K)]_*(J+I,K)4J

Fp(J,K) S(J,K)+ 2
ck(J,K) zk xk(K)zk

(3.3-2z)

(3.3-23)

which has the limit conditions, from (3.1-5) and from defini-

tion of ¢*(J,K),

¢* (1,K) = 0

¢*(L-1,K) = ¢*(L+l,K).
(3.3-24)

As with the expressions for Fj(J,K), a recursion relation

exists for (5.5-22). This is

Fp(J,K) : - Fp(J,K-1) zk + l>kk(K-1 ) k (J,K-1)
(3.3-2_)

and it holds, of course, for time steps excluding K=I. For

K=I the value of Fp(J,l) is

h2

Fp(J,l) = - _-- hk(J,0 )

i
(3.5-26)

Zkk k (1 )

If equation (2.3-14) is to be used, instead of the con-

servation relation (3.3-10) for species k, in determining

¢* values as discussed in Section 3.2, then (2.3-14) is put

.
in the finite difference form

Since no second derivative terms appear in this equation,
the finit_difference representation of error order h can be

found aused for _ in (3.3"27)and has been convenient choice

in this u1 application.



¢*(J,K)-¢*(J-I,K)] -ih = V(J,K)

In**(J,K) -- e*(J-1,K) - V(J,K) _h-r(J,K)

where :

J

[n_I(J,K) + W(J,K)]h

+ W(J,K)]

(3.3-2s)

Equation (3.3-27) has the boundary conditions given by

(3.3-29)

(5.5-24). It can be solved for given values of Cj(J,K) by

evaluating W(J,K) and proceeding stepwise from @*(I,K) = 0.

The conversion of the values of @*(J,K) of the system

of (5.5-23) to values of ¢(J,K) requires a knowledge of

¢(!,K). This value is determined from thei!ast condition of

(3.1-5) by considering the integral as numerically evaluated,

thus becoming

_L L p<_*(J,K),_(I,K),C i(J,K)) - i = 0
F-"

(NU_RIC)

Although this expression may not be explicit in @(I,K), this

quantity can be found by application of a suitable root,

seeking procedure such as the Newton-Raphson method (see

Lapidus24).

The finite difference expressions given in the previous

paragraphs of this section are for use at all time steps

(3.3-30)

=JL_F (J,K),Ci(J,K) .I(J,K)

(NUMERI0)
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(3.3-27)

W(J,K) = _zjvj[Cj(J,K) - Cj(J-I,K)]

J

31
and where I(J,K) is given by numeric integration of _-_ from

LF to J. Using the notation Section 2.5 (i.e., (2.5-15))
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except the initial condition, T=0(K=0). Here the values of Cj

are specified in (5.1-5). Thus solutions are only required

for ¢(J,O). For this purpose equation (2.5 -14) can again be

used, becoming under the conditions

at T=0

I =

of Cj = 7j which exist

where _ is used (as previously defined) to represent

Taking the derivative with respect to Y of (3.3-29)

82¢ 1 8I I
_-_ = _ _ _ : _ p(_,ci) (3o3-32)

This expression can be put in finite difference form and

Bk(J,0 ) used as equivalent to p(¢(J,0),7i), giving

1 Bk(J,0 )•*(J-l,O)- 2_*(J,0)+ _*(J+l,O)= _ (3.3-33)

which has limit conditions analogous to (5.3-24)

¢*(i,o)= o

¢*(T.-1,O)= ¢* (_i,0) .
(3.3-34)

¢(i,0), and thus ¢(J,0), are then found by a procdure essen-

tially identical with that given for determining ¢(I,K) in

(3.3-30).

The steady state condition of the system is represented

by (3.l-l) with the left-hand sides set equal to zero. Finite

difference representation for this state can be expressed in

the form of equations (3.3-14) and (3.5-23) with their appro-

priate limit conditions by the simple process of setting the

i

quantities Fj(J,K), Fp(J,K), and _ equal to zero. That

is, if K=S signifies the steady state condition,
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i
Fj(J,S) = Fp(J,S) = Xj--T57 = 0. (3.3-3s)

Then a solution of the equation system at steady state is the

same as a solution at any tlme step, but wlth the special

values of the quantities given in (5.5-55) being employed.

These finite difference representations of the porous

electrode, equations (3o3-14) and (3.3-23) for a tlme step,

K, (or for K equal zero or S) constitute a large and complex

system of simultaneous, non-linear, algebraic equations, the

solutions to which will predi0t the behavior of the porous

electrode model.

3.4 Conduct of Calculation Procedures

The finite difference representation of the one dimen-

sional porous electrode model, developed in the previous

section, has created in essence a separate problem for each

value of T considered; a problem which is linked, however,

to the solutions of the problems for previous time steps.

Each of these problems consists of a set of simultaneous alge-

braic equations (3.3-14) and _.5-23), which are reproduced

again here, in condensed form.

_j(J,K)Cj(J-I,K) + _j(J,K)Cj(J,K) + _j(J,K)Cj(J+I,K)

= Fj(J,K) + _j(J,K) (5.4-1)

- +

= ,v + A(J,K) (3 4-2)
Ck(J,K)



p(J,K)
where: _(J,K) = 1 - zj 4

I](J,K) = zjQ(J,K) - TjAj(J,K)

P(J,K)
_(J,K) = 1 + zj 4

_(J,K) = TjBj(J,K)

_(J,K) = 1 - R(J,K)
4

v(J,K) = 1 + R(J,K)
4

A(J,K): - S(J,K)+
zk Xk (K )zk

(3.4-3)

Since Aj(J,K), Bj(J,K), P(J,K), and Q(J,K) are functions of

• (J,K), then _j(J,K), _j(J,K), g_j(J,K), and _j(J,K) are

likewise explicitly dependent on ¢(J,K). Similarly, the

dependence of R(J,K) and S(J,K) upon the Cj(J,K) causes

_(J,K), v(J,K), and A(J,K) to be functions of Cj(J,K). At

any time step K, Fj(J,K) and Fp(J,K) are known from preceding

time steps, or, in the steady state case, are specified by

relation (3.3-33). The above expressions are valid for

J = 2, ..., L - i, with limit conditions holding for J = i

and J = L.

(5.5-27).

Equation (3.4-2) may be replaced by a form of

Taken with the appropriate side conditions as specified

in Section 3.3, there are L of the equations (3.4-1) for each

of the N-I species, J _ k, and L of the equations (3.4-2) for

@* (or with condition (5.5-50), for ¢). At any K there are

L values of Cj(J,K) (J=l, ...,L) for each J _ k and L values

of ¢*(J,K) (or ¢(J,K)) to be determined. Thus the system can
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be represented by a set of matrix relations: (3.4-4) and

(5.4-5) as shown on the following page. The alternate ¢*

equation (3.3-27) does not require matrix calculations. If it

were not for the nonlinearities involved, that is if the terms

_j, _j, _j, _j, _, V, and A were known in (5.4-_) and (3.3-5),

these matrix equations could be resolved to give values for

all Cj(J,K) and ¢*(J,K). However, in the actual case it is

necessary to use estimates of Cj(J,K) and ¢(J,K) to evaluate

the matrix coefficients and right-hand vector, and then to

develop new values of the variables by solution of the approxi-

mated, linearized, system. These new values can then be used

to re-evaluate the matrix coefficients in an iterative pro-

cedure.

The iteration scheme followed must be quite carefully

selected if successive values of Cj(J,K) and ¢(J,K) deter-

mined in the course of iteration are to approach the solu-

tion to the non-linear equation system. It has been deter-

mined that solution of the entire system (3._-4)-(3.4-5) for

each set of iterates Cj(J,K), ¢(J,K) does not, except in un-

usual cases, lead to convergence. Moreover, it_is the con-

vergence of this iteration that has dictated the form adopted

for the source term in Section 3.2 (3.2-1). Convergence is

most easily achieved if starting estimates are close to

actual solutions, thus every effort must be made to secure

good starting values. A basic iteration procedure, as out-

lined in the next paragraph, has been developed which converges

in most cases to the solutions for the system (3.4-4), (3.4-5)
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with reasonable rapidity. Certain computational cases require

variations of this procedure, which will be discussed later.

The basic iterative process for the solution of the non-

linear finite difference equation system representing the

porous electrode at time step K (or at steady state) is as

follows:

i. At time step K select initial estimates of ¢(J,K)

for all J. These are based upon the results of the

last time step (K-l) or upon solutions of similar

problems in the case of steady state.

2. Using estimates of ¢(J,K) from (1) or values from

a previous iteration, evaluate the terms _j(J,K),

_j(J,K) and _j(J,K) for the expression of type (3.4-4)

pertaining to the principal reactant and product

species for reaction (2.1-6). Then using these

values solve the matrix relations for Cr(J,K ) and

Cp(J,K) (rand p representing reactant and product)

simultaneously. Since the matrices concerned are in

trldiagonal form, this solutlon (and other such solu-

tions in this procedure) are conveniently accomp-

lished by a modification of the method attributed to

27
Thomas by Bruce et. al. .

3. Repeat step (2) for any other reactants or products

not appearing in the overpotential expression.

4. Repeat step (2) for other species J _ k present.

5. Using the values of Cj(J,K) determined in (2) through

(5) above for J _ k, calculate values of Ck(J,K )
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for J = 2, ..., L by means of the electroneutrality

condition, expressed in terms of finite difference

variables as

Ck(J,K) = l_kkj_k zjCj(J,K)

(3.4-6)

6. Evaluate the matrix coefficients and right-hand

vector of (5.4-5) in terms of the approximations to

Ck(J,K) found in step (5). Then solve the tridiagonal

matrix equation for ¢*(J,K) for J=2, ..., L. Alter-

nately, for cases previously mentioned, evaluate

V(J,K) and W(J,K) and solve (5.3-27) sequentially for

¢*(J,K), from J=2 to J=L.

7. Integrate the overpotential relation, p(¢*(J,K),

¢(I,K), Ci(J,K)), numerically over the interval

J=LF, ..., L to find ¢(I,K) as described by (5.3-50).

Determine the new approximations (iterates) ¢(J,K) =

¢*(J,K) + ¢(I,K) for J=l, L.

8. Compare the ¢(J,K) generated in step (7) with the

value from the previous iteration (value used at

step (2)). When the values are the same the process

has converged. The comparison is most sensitive if,

instead of the ¢(J,K) values themselves, p(¢(J,K),

Ci(J,K)) evaluated with ¢(J,K) and Cj(J,K) from

present iteration is compared with this function

evaluated at the end of the previous iteration. The

criterion for convergence is that the change in p(J,K)

values shall be less thansome preset quantity,
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epsilon, for all J=LF, ..., L. If this convergence

criterion is not satisfied, go to step (2) and

commence a new iteration. If it is satisfied, record

the values of Cj(J,K), _(J,K) for T=_(K) and proceed

to time step K+l.

The calculational sequence described above yields solu-

tions after a reasonable number of iterations to the "problem"

of a single time step, for most values of parameters involved.

Excluded, of course, are choices of the parameters which

would lead to functions p(J,K) which approach a Dirac delta

function at Y=0 (delta functions are not conveniently des-

cribed or treated numerically). Certain cases (or certain

time steps of some cases) do present difficulties which require

variations in the basic procedure just described. These

difficulties can be attributed either to oscillation from

iteration to iteration or to a "creeping" approach to conver-

gence.

The phenomenon of oscillation arises most strongly in

cases where the principal current carrying species in the

electrolyte (species with large concentration and diffusion

coefficients) exhibit large gradients of concentration (Cj(J,K)

a strong function of J for J a principal current carrying

species). It is accentuated by inaccurate starting estimates.

Oscillation manifests itself as a periodic (with the course

of the _a_tion procedure) _r_tion in the approximations to

Cj(J,K) and ¢(JjK), either of relatively constant or increasing

amplitude. Oscillations of rapidly decreasing amplitude may

67
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be ignored. The oscillation period is most commonly two

iterations but may be more° This behavior precludes conver-

gence of the basic iteration procedure. It is treated by

the introduction of iteration to iteration damping on the

variable @(J,K) whenever oscillatory behavior appears, and

by using two iteration running average values of certain

source terms. Damping is imposed by using a weighted average

of the values of @(J,K) from the most recent and immediately

previous iterations, in place of that from the most recent

iteration alone, as the quantity used in evaluating coeffi-

cients, etc., in step (2). The weighting factor on the most

reaent @(J,K) value is started (when damping is introduced)

at 0.9 and is decreased each iteration by a factor of 0.9

as long as oscillation persists. When oscillations terminate

damping is decreased by multiplying the factor by 1/0.9

each iteration until the factor is unity or oscillations again

appear. Any initial degree of damping may be selected.

Note that the convergence criterion must be tightened by

dividing the quantity epsilon by the weighting factor described

above whenever damping is imposed_ This simple damping pro-

cedure effectively elimlnates oscillation difficulties in

almost all cases, though sometimes at the expense of large

(_50) iteration counts. Improvement of starting estimates

of @(J,K) helps alleviate the oscillation phenomenon.

in cases where a redox type overpotential expression

(see Section 2.4), or a relationship of similar properties, may

exhibit large forward and reverse rate terms and a net reaction
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rate very small by comparison, the phenomenon of "creeping"

convergence may arise. In this behavior the changes in

¢(J,K) approximations from iteration to iteration become pro-

gressively smaller as convergence is approached, in the end

creating a situation where it is impossible to ascertain when

convergence has, in fact, occurred. In order to overcome

this difficulty, a significant modification of the basic

calculational procedure is instituted. In concept, the modi-

fication consists in substituting a condition of fixed applied

gross overpotential,

¢(I,K) = E (5.4-7)

for that of fixed applied current (5.5-50). Step (6) of the

iteration procedure then solves for _(J,K), instead of

•*(J,K), and step (7) is omitted. When convergence for a

value of E is obtained the inlet current, I(I,K), is calcu-

lated from

L

I(I,K) =fLF P(_(J,K), Ci(J,K)) (5.4-8)

NUMERIC

and compared with unity. A new value of E is then chosen to

reduce the discrepancy between I(I,K) and 1 and the procedure

repeated. Successive values of E are used until I(I,K)

approaches satisfactorily close to the desired fixed condition,

I(l,K)=l. While this procedure has been found to effectively

improve "creeping" convergence, it must be used Judiciously

as it imposes a requirement of several convergent iteration

processes, and thus many iterations, per time step.

The calculational process described in this section



develops values for Cj(J,K) and ¢(J,K) for J=2, ..., L from

given conditions at K-I. As stated in the first paragraph,

this calculation can be considered entirely separate from

overall transient problem and will be referenced in further

consideration of the transient system analysis.

7O

5.5 Time Step Procedure

The progression from the solutions for Cj(J,K-1),

¢(J,K-1), determined by the methods of Section 5.4 for any

time step, K-l, to the specification of the equation system,

(3.4-4)-(3.4-5), for the next succeeding time step, K,

constitutes what may be termed the time step procedure.

This consists in first establishing the magnitude of the step,

g(K), to be used, and then evaluating the terms, Fj(J,K) and

Fp(J,K) by the appropriate recursion relations, (3.3-16) and

(3.3-25). Once the first of these tasks is accomplished,

the second is merely a straightforward substitution using

Cj(J,K-I) and ¢(J,K-l) values.

The choice of a time increment, g(K), for time step K

must be based upon the rate of variation of Cj(J,K) and

¢(J,K) with K at this step. Although the Crank-Nicholson

symmetric finite difference form utilized in the calculations

is apparently stable, given convergent solutions to iteration

procedures at each time step, the cumulative effect of errors

made at time steps is of order h-lg -I. Thus, choosing g(K)

excessively small generates large cumulative deviations in

the solution to the finite difference procedure, as well as

being prohibitively costly in computation effort. On the
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other hand, if an overly large value of g(K) is used, the

error in the finite difference representation of the time

derivatives may become unacceptable. Although the value

g(K) used should, strictly speaking, be based on the

behavior of higher order derivatives of the concentrations,

Cj, with respect to T, such a method is impractical because of

lack of knowledge of these derivatives. However, the choice

cannot be avoided by selection of a constant value of g

which is small enough for the situation at any time step

due to the error propagation effect mentioned above. The

procedure adopted is based upon the behavior of the terms

Fj(J,K) in (5.4-1) or (5.4-4); it generates small values of

g(K) under conditions where Cj(J,K) is changing rapidly and

its higher derivatives can be expected to be significant.

The use of varying time steps should not adversely affect the

convergence of the calculations, as shown by Douglas and Gallie

28
for systematically varied time steps

By examination of the system (3.3-11) in its explicit

form and the recursion relation (3.3-16), Fj(J,K) can be re-

lated to the finite difference approximation for the T

derivative of Cj(J,K-1), evaluated at T=T(K-1) by the expres-

sion

h2 2

Fj(J,K) = vJ [Cj(J,K-I)]T kj_ Cj(J,K-I) (3.5-1)

.

For the symmetric form this error can be estimated, for
an arbitrary function U(_) by considering the realtion

uIKl- ,,,_-K-½ = g - (4) 6_) U (6)

where _ is some value of • between those corresponding to the

indices K-I and K. If U'''(_) is large in the neighborhood of
•=_(K), the g must be small.
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where [Cj(J,K-I)] T signifies the finite difference representa-

tion of the T derivative of Cj at K-I. From (3.5-14) at

T=T(K) the additional expression can be written

[Cj(J,K)]- _ Cj(J,K)= Fj(J,K).Trj

Recalling Xj(K)= vjg(K)/h 2, (3.5-I) and (5.5-2) become

2 Cj (J,K-I)_2 Fj(J,K) = -[Cj(J,K-I)]7 -

(3.5-2)

(s.s-5)

2 Cj (J,K)_2 Fj(J,K) = +[Cj(J,K)]_ -
(5.5-4)

Since g(K) and Cj(J,K) are always >0, if [Cj(J,K)]_ •0, then

from (5.5-4) Fj(J,K) •0. But then from (3.5-5)

2 Cj(J,K-I) > -[Cj(J,K-I)].[ ° (5.5-5)

Conversely, if [Cj(J,K-I)] T "0, from (3.5-3)Fj(J,K) <0,

and from (5.5-4)

2

Cj(J,K) > [Cj(J,K)]7 (3.5-6)

Thus for either case, the requirement is placed, if Cj(J,K)

is to be >0, that

2 Cj (J,K-I)

g(K) • I[cj(J;K-1)]._l (3.s-7)

This can be satisfied by the approximation

g(K) = rain {2 (1 2 CIFJ(J'K-1)]_fC_tJ'K-1)_I__\ " _"

(5.s-8)

wi _^''_L,_u_t,e---_"v_.ua_u±ngr_ . it should be noted that thisL,,j (J,K-l)]_

treatment employs g(K) values which will usually be too large

to give a difference equation of the positive type (see



Forsythe and Wasow29) ; this is not a restriction in the use-

fulness of the computational procedure, nor an adverse

influence upon the stability of the process.

If the conservative value of g(K) calculated according

to (5.5-8) Is used for cases where Cj(J,K-I) get very small

for some J, then the time steps may become impossibly small

for practical computation. In these cases, that is for

situations where some Cj(J,K-I) are less than a set minimum

limit, the limitation imposed by (5.5-7) may be avoided by

using an extrapolated (toward steady state) value of

Fj(J,K). This is accomplished by noting, from (5.5-14) and

(5.5-55), that as steady state Is approached

Fj (J,K) _ 2- _ Cj(J,K) (5.5-9)

or in context of the recursion relation (5.5-16)

<_ 2 ) CJ(J'K-1)Fj(J,K) = -Fj(J,K-1) - 2 + kj(K-l)

2
kj_-_ Cj (J,K-I) (5.5-10)

If it Is now assumed that extrapolation can be made in the

form

Cj(J,K) = Cj(J,K-I)exp [w(J,K) g(K)] (5.5-11)

where w(J,K) is a coefficient which may be formed from

w(J,K) = !Cj(J,K-I)

Cj (J,K-I)

v_J {IYj(J,K-1)Cj(J,K_I) ,J2 )-- + ' (3.s-12)

73
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then the extrapolation of Cj(J,K) is

Cj(J,K) = Cj(J,K-1)exp[(_Jj '(J'K-I)_-(J,K-I) + kj (K-l) Xj(K) (3.5-13)

which leads to the extrapolation for Fj(J,K) of

2Cj(J,K-I) IX ( Fj (J,K-I)Fj(J,K) = - Xj(K) exp j(K) Cj(J,K-I) +

Although this extrapolation procedure could lead to quite

erroneous values for Fj(J,K) if applied too far from steady

state, it has no appreciable adverse influence on the course

of the calculation because It is only used when Cj(J,K-I),

and thus Fj(J,K), are very small. This statement concerning

the application of thls procedure has been confirmed by com-

parison of calculations conducted with and without its im-

plementation; in any event, the extrapolation is rarely

required.

The time steps determined as outlined above are also

subjected to an arbitrary upper bound in magnitude. This is

established in order to glve a sufficient number of data

points in • for evaluating system performance. Once the time

step magnitude, g(K), is determined, the formulation of the

equatio_ system as in the previous section is easily accom-

plished by means of the recursion relations for Fj(J,K) and

Fp(J,K) as mentioned at the start of this section. If the

alternate calculation of ¢*(J,K) is utilized (3.3-27),Fp(J,K)

need not be evaluated.

The conduct of the transient solution proceeds as a
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series of individual time step solutions, conducted as out-

lined in Section 3.4, each leading, through the procedures

described in this section, to the definition of the "problem"

for the next time step. The sequence of operations continues

until the values of Cj(J,K) and ¢(J,K) for some time step

approach satisfactorily close to the values of these variables

under steady state conditions. These latter values are

determined prior to initiation of the transient computations

by an iterative procedure on equations (3.4-4) and (3.4-5),

exactly as for any time step, with the zero values of Fj(J,S),
1

Fp(J,S), and _ as imposed in (3.3-35). This approach to

a previously determined condition also provides a confirma-

tion on the stability of the time step procedure in each case

treated.

3.6 Computer Implementation of Calculations

The execution of the calculational procedure presented

in the preceding sections of this chapter requires extremely

large numbers of arithmetic operations. A single iteration

described in Section 3.4 requires on the order of 20,000

manipulations , and from l0 to 200 iterations may be required

at each time step. Thus the technique developed in this in-

vestigation is practicable only when implemented by high

speed digital computation machinery. This has been carried

out with an IBM 7090 Data Processing System

Additions and multiplications, not including logical deci-

sions, based on a system with _ species present in the elec-

trolyte and using a value of h=0.01.

**
Computer Center, University of California, Berkeley.
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The calculations were adapted for the digital computer

through a FORTRANII program. This program closely follows

the sequence of operations described in Sections 3.4 and 5.5,

with necessary formalization of logical _ecisions; it is

described and listed in Appendix IV. The program is appli-

cable to systems of five or fewer species present in the

electrolyte. About 5 to 20 minutes are required for calcula-

tion of each case treated.

For each case (porous electrode system and operating

condition) to be analyzed, the input parameters required for

the machine computation are:

N : Number of species present in electrolyte (N_5)

zj : Charge numbers of each species (J=l,N)

vj : Stoichiometric coefficients of each species for
electrode reaction (J=l,N)

_j : Diffusion coefficient ratios (j=l,N-1)

a,_,_: 0verpotential parameters (as required by what-
ever overpotentlal expression is being utilized).

7j : Bulk concentration ratios (J=I,N-I)

: Dimensionless current drain

A : Dimensionless equivalent transfer layer thickness

h : Distance increment

go : Initial time increment

ci,c2: Convergence criteria for calculations at a time
step and for _proach to steady state,
respectively.

IBM algorithmic programming language.

The convergence condition is p(J,K) - p*(J,K)_¢ for all J
where p(J,K) stands for AIIJ,K) CI(J,K) + BI(J,K), the transfer
current density, and p*(J,_) is, fSr ¢i, the_value of p(J,K) at
the last iteration, and for ¢2, the value of p(J,K) at steady
state.
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Cins: Minimum concentration level considered significant
(different from zero) for output purposes

In addition, control indicators as explained in Appendix IV

are required as input information. These designate program

options to be used in regard to auxilliary output material,

conditions for terminating unsuccessful calc_lations, and

so forth. All input information for each case is in punched

card form. The overpotential expression to be utilized is

entered as a subroutine with the parameters _, _, _ (or

any one or two of these).

The program output is in the form of line-prlnted data

sheets, with optional magnetic tape output record for further

processing. The primary printed output consist in a listing,

at each time step and at steady state, of the values of

8I/8Y, ¢, and the cj for selected values of Y (usually every

0.02 for -A _ Y _ I).

The specification of type of overpotential expression

by Choice of a program subroutine, as mentioned above, lends

considerable flexibility to the computation procedure. A

subroutine covering Tafel and redox type expressions only is

listed in the appendix, but others can be devised, subject

to the restrictions of three parameters and adaptability to

required form of Section 3.2 •

The form, setting- _-_= p(J,K) = Aj(J,K) CI(J,K) + Bj(J,K)
_ no_ imply linea_y ao _,Kj an_ Bj_,K) may _nvo_ve

C I(J,K) evaluated at last iteration. Each form poses indi-
vidual convergence problems.
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This mechanized computation procedure provides a quite

rapid method of analyzing the behavior, under steady state

and transient conditions, of any porous electrode system

which can be represented by the one dimensional model of

this dissertaion.
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4. APPLICATION TO ELECTRODE SYSTEMS

4.1 Characterization of Electrode Systems

The analysis of a particular electrode system requires

that the system, and its condition of operation, be described

in terms of the input parameters of the computer implemented

numerical procedure. These parameters are described in

Section 5.6.

The system itself, including the electrode reaction, is

characterized by the number of species present in the elec-

trolyte; the charge numbers, stoichiometric coefficients,

and diffusion coefficients of each species; and by the over-

potential expression for reaction at an element of interface.

In terms of the input parameters, this description involves

N, zj, vj, _j, and the overpotential parameters (a, _, _ as

required).

The condition of operation of the system is determined

by specification of the concentrations of species in the

bulk electrolyte, the equivalent transfer layer thickness,

and the superficial current density associated with the

electrode current drain. These conditions are represented

through values of the parameters 7j, A, and _. The effect

of variation of operation on electrode performance is inves-

tigated by determining behavior of the model at several

values of these operating parameters, distributed over the

range of interest.

Application of this model to any real electrode requires,
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then, an accurate set of data descriptive of the electrode

reaction at an element of interface and of the transport

phenomena for the species present in the electrolyte. For

most systems of interest such data are not available. In

fact, the almost complete lack of data concerning the varia-

tion of ionic transport parameters with electrolyte composition

leads directly to the necessity of some assumption for this

behavior° The simplest assumption, that of constancy, was

adopted here (see Section 2.2). The absence of reliable over-

potential expressions for most systems has been discussed in

Section 2.4, together with the types of expression selected

for use in this analysis. These difficulties in finding

accurate descriptive Rarameters for systems to be analyzed

have, to a significant extent, dictated the degree of approxi-

mation used in this treatment. However, in many cases of porous

electrode systems so little is known as to basic behavior of

the electrode reactions that no analysis of any type can be

undertaken at the present time.

In this investigation two electrode systems have been

selected for analysis, both to illustrate the application of

the method and to develop description of electrode behavior

reasonably typical of many porous electrodes. One of these

systems is the metal-insoluble oxide electrode in basic

solution, typified by a slightly idealized cadmium anode of

a nickel-cadmium cell. The other was the ferricyanide-ferro-

cyanide redox electrode (cathode) in 2N sodium hydroxide

solution. These selections were based upon a desire to



examine systems of quite different natures but of considerable

practical interest. The cadmium electrode represents an

anodic reaction occurrlng in a binary electrolyte and yielding

an insoluble product; it is of importance due to the wide

utilization of nickel-cadmium batteries, and other cells

using similar metal-metal oxide couples. The ferri-ferro-

cyanide system represents, on the other hand, a reaction

occurring in the presence of excess inert electrolyte (the

Na0H) and having both reactant and product as species present

in the electrolyte; it is a system that is well adapted to

experimental investigation of transient porous electrode

performance. Through these two examples, the salient features

of the dynamic behavior of a wide range of porous electrode

systems may be demonstrated.

4°2 Analysis of Idealized Cadmium Anode

The cadmium anode in basic solution, treated in slightly

_±zed form to permit arbitrary choices among conflicting

data and characterizations, is representative of a consider-

able number of metal-metal oxide porous electrodes finding

wide commercial application (e.g., Ag-Ag0). The electrode

is typically composed of a porous metal matrix operating in

20-30% KOH. Here 5N (23%) K0H is used. Temperatures of

operation are usually ambient, 25°C being selected for this

example. It should be noted that the anodic operation con-

sidered corresponds to the discharge of a nickel-cadmium cell.

The discharge reaction for a nickel-cadmium cell in

81
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KOH has been described by Kornfeil as:

Cd + O__xx+ 0.84 _0 _ Cd(OH)2 + Red + 0.067 KOH (4.2-i)

where O__xxand Re___drepresent, respectively, the oxidized and

reduced forms of the active species of the nickel oxide plate.

There is considerable disagreement about these nickel oxide

forms, but this is of no concern in the analysis of the

cadmium anode. In any event, reaction (_.2-i) shows that

there is not a significant change in the bulk concentration

of KOH during discharge. At the cadmium anode, the half

cell reaction is

Cd + 2OH- - Cd (0H)2 _ 2e- • (4.2-2)

For this system the electrolyte is binary, the signifi-

cant species present being OH- and K + which are given the

indices 1 and 2, respectively. Then, with the 5N bulk KOH

concentration:

zI = -i ; z2 = +I

vI = +2 ; v2 = 0 (4.2-3)

0 = 0 -3
C1 C2 = 5 X i0 gmol/cm 3

The diffusion coefficients in concentrated K0H are not

well known, and of course not independent of concentration.

For this analysis, ionic self-diffuslon coefficients at 5N

concentration were estimated, and these estimates used as

the basis for assumed constant values of the model. The

........... _e .,a_e

values from Harned and Owen 31, converted to dilute solution

diffusion coefficients by the Nernst-Einstein relation (2.3-7).
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These values were, in turn, used to derive diffusion coeffi-

cients at 5N concentration by means of the expressions

developed by Gordon 52 and the procedure outlined by Reid and

Sherwood 55. The activity coefficients required for this

estimation were taken from Harned and 0wen 54. The estimates

developed in this manner are D1 = 4.7 x i0 -5 cm2/sec_

D2 = 1.8 x 10 -5 cm2/sec. Due to uncertainty in these values,

the diffusion coefficient-Faraday products used for this

example were taken as the round number approximations:

DIF = 4 cm 2 coul/gmol sec
(4.2-4)

D2F = 2 cm 2 coul/gmol sec .

For the electrode kinetics of this anode, no reliable

data are available. Vetter 55 gives a transfer coefficient

of 0.55 for Cd oxidation in _S04, indicating the assumption

of a = ½ is not unreasonable. However, exchange current

density estimates by battery manufacturers range over several

orders of magnitude, even at a fixed K0H concentration.

Thus it is desirable to use several values of this parameter

and note the effect of its variation on electrode behavior.

For the analysis the overpotentlal is characterized by

=0.5

i° = 10 -5 , 10 -2, and i0 -I amp/cm 2 (4,2-5)

The structure of the electrode also enters the calcula-

tion, both through the specific surface term in the parameter

and in the relation of superficial current densities to

those in the pores. Based upon data furnished by U. B. Thomas
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of Bell Telephone Laboratories , this structure may have a

porosity of 40 to 80% and a characteristic pore dimension of

perhaps 2_. Plate thicknesses range from 0.06 cm to 0.35 cm,

and specific matrix surface area is approximately ½ m2/cm3.

For the cadmium electrode of this study, the following values

are adopted.

= 0.i cm (4.2-6)

a = 104 cm2/cm3 based on pore volume

A porosity of 50% is assumed.

Equivalent transfer layer thickness is dependent upon

conditions exterior to the electrode and may vary widely.

For this reason it was decided to study the effect of its

variation, using value_ for the cadmium anode of

5 = 0, 0.01 cm, and 0.05 cm . (4.2-7)

Since possible operating conditions of a cadmium anode

include an extensive range of electrode current drains,

operation at superficial current densities from 0.01 to

almost 2 amp/cm2 was investigated. For the 50% porbsity

assumed, and using three current density values per decade,

values of current density considered were

-i* = 0.02,0.05,0.i0,0.20,0.50,i.0,2.0,3.0,3.8 amp/cm2 (4.2-8)

The values of the parameters describing the cadmium elec-

trode, and its operation, given in the preceding paragraphs

correspond to the input parameters characteristic of the system

Private communications from U. B. Thomas, Head, Electro-
chemical Research and Development Department, Bell Telephone
Laboratories.

This is limiting superficial current density for 5=0.01 cm.
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N =2

zI = -i ; z2 = +i

vI = +2 ; v2 = 0

_i = 2.00

T1 = 1.00

c_ = 0.50

= 5, 50, 500.

(4.2-9)

The operating conditions studied are represented by the

input parameters

A = 0,0.i, 0.5

= 0.10,0.25,0.50,1.00,2.50,5.00,10.0,15.0,19.0.

To keep the number of cases computed from becoming excessive,

the effect of different _ values was studied only at A=0.1,

and that of different A values only at _=50. The cases of

operation considered for the cadmium anode were, then, as

listed and identified in Table I.

For comparison purposes, certain operational cases were

analyzed wlth a Tafel type overpotential matched to the

redox type expression at is ----_. These cases are tabulated

in Table II.

The calculated operation of the cadmium anode at steady

state is presented in Appendix V for each of the cases listed

above. The description takes the form of curves of transfer

current density (reaction rate) and K0H concentration as

functions of position, In depth, In the electrode. In inter-

preting these curves it must be remembered that they involve

non-dimenslonalized variables and that for this system the

(4.2-1o)
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Cases of Operation Considered for Cadmium Anode in 5N K0H

Redox 0verpotenhial

Case Number , ,_ A

so. o,1

500.

5.

L
50.

A1

AZ(T)

A5

A4

AS(T)

A6

A7

A8(T)

A9

A10

All

A12

AlS(T)

A14

A15

A16

AIT(T)
AI8

AI9

A20

A21

A22

A25

A24

A25

0.05

0 .i0

0.25

0.50

1.0

2.5

5.0

I0.

15 •

0.0

i
0.5

i

18.

0 .i0

1.0

i0.

15.

0. i0

1.0

i0.

15.

0. i0

1.0

i0.

!5.

0 .i0

1.0

5.0

TABLE II

Cases of Operation Considered for Cadmium Anode in 5N K0H

Tafel 0verpotential

Case Number _ A 6

A27 50. 0.1 0.10

A l l oA29(T) 10.

A50 r 15.



superficial current density is -0.18 (amp/cm 2) ; the transfer

(amp/cm 3) or 2 x 10 -4 8 _-_current density is 28 _ 8I (amp/cm 2

pore wall); distances are 0.i Y (cm); and overpotentials

0.0256 ¢ (volts).

The steady state operation of the system is summarized,

and the effect of variations of the parameters 8, _, and

demonstrated, in Figures 4 through i0. These represent

predictions of system behavior based upon a redox type

overpotential expression. In Figure 4 the distribution of

transfer current (in depth) in the electrode is shown for

several values of 8 for _=50, A=0.1. Similar curves are

presented for higher and lower exchange current densities,

_=500 and 5, respectively, in Figures 5 and 6. It can be

seen in Figure 4 that as 8 is reduced, a distribution is

reached (at about 8=0.5) which is not affected by further

reductions in current drain (8)- This same phenomenon

occurs for the other values of _. Comparison of Figures 4,

5, and 6 reveals the profound effect of exchange current

density (_) upon current distribution, particularly at lower

current drains. This effect is clearly illustrated by the

comparison of current distributions at _=i.0, A=0.1 for

_=5, 50, and 500 in Figure 7.

The effect of different transfer layer thicknesses upon

current distribution is small at moderate current drains

as should be expected for a binary electrolyte. This is

shown in Figure 8 for _=l.0, _=50. In essence, the presence

of a transport layer serves only to decrease the concentration
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of species at the electrode surface, and, since for a binary

electrolyte such as K0H the concentrations of anions and

cations are always equal (or in fixed ratio), this effect

appears as a change in the "effective" value of _ at the

electrode surface. Large concentration changes are encoun-

tered only as limiting superficial current density is

approached. At this Juncture, which corresponds here to a

value _=2/A, transfer current becomes concentrated in the

very first layer of the electrode and overpotential increases

without limit.

The behavior of total electrode overpotential, ¢o"

exclusive of the resistive potential drop across any

effective transport layer present, is presented in Figure 9

as a function of current drain. For convenience, a logarith-

mic representation has been chosen; in this way the behavior

over a wide range of conditions may be examined. For all

conditions of _ and A, up to quite significant superficial

current densities, a linear relationship (unit slope on log

plot) exists between ¢o and _. This linear behavior is

characterized by a zero intercept and thus a form

¢o = b

where the slope b is a function of _ and A.

limiting slopes are given in Table III. At higher values

of _ (say above i to 5) this linear relation ceases to hold

and the ¢o vs. _ slope increases rapidly. The overpotentials

are, at equivalent values of _, higher for low exchange

Values of these
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current densities and high transfer layer thicknesses, as

would be expected from elementary considerations. For a

vanishing transfer layer thickness, that is in absence of any

reduction of electrolyte concentration at the electrode face,

the linear behavior persists even under conditions where

local transfer current densities in the front section of

the electrode (where essentially all reaction occurs) are

high compared to the exchange current density.

TABLE III

.- , __ • .....

Limiting Overpotential Slopes
Cadmium Anode in 5N KOH

5. 0.i0 - 0.303

0. 0.00 - 0.087

0.i0 - 0.112

0.50 - 0.212

500. 0.i0 - 0.053

J ' ' ,, _ I IIIII

It is apparent in examining the distribution of transfer

current in the one dimensional model of the cadmium anode,

in Figures 4, 5, and 6 or in Appendix V, that the portion of

the electroae contributing significantly to the current

being drawn may be very small indeed. Since this part of

the electrode is that closest to the electrode surface (and

the counterelectrode), this behavior can be characterized

by a "depth of penetration", Ygo' of the electrode reaction

into the porous matrix, taken as the value of Y at which the

current in the electrolyte, I, has fallen to 10% of its

value at the electrode face (where I=i.0). This distance,
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then, is the depth of the region near the face of the elec-

trode in which 90% of the electrode reaction occurs. Y90

is depicted as a function of _ in Figure i0. Here curves

are given for _=5, 50, and 500 at A=0.1 and the effect of

A is illustrated for _=50. The depth of penetration has

a limiting value at low _ which decreases sharply with in-

creasing _ and is independent of A. As B increases the pene-

tration decreases abruptly above _=i, becoming zero at the

value of _ corresponding to limiting superficial current

density for the transfer layer thickness, A, under considera-

tion. For high exchange current densities the reaction

may be confined to a narrow zone (_0.02 cm) near the face of

the electrode for all values of _.

This behavior has been predicted and discussed by many

investigators (see Section 1.2) but the influence of the

effective transfer layer exterior to the electrode has not

been cited. As exchange current densities should be high

for favorable overpotential behavior, and in any event are

not subject to control, the reduction of transport resistance

exterior to the electrode assumes considerable importance in

effective utilization of the porous electrode at high cur-

rent densities. This can also be seen from the overpotential

curves of Figure 9.

Transient behavior has been analyzed only for certain

cases selected from those examined at steady state and listed

in Table I, for reasons of the computational time involved.

These are indicated in the aforementioned table by the symbol
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(T) following the case number. Calculated transient operation

of the cadmium electrode in each of these instances is pre-

sented as plots of transfer current densities, concentration,

and electrode overpotential against elapsed time in Appendix

VI. The number of transient cases computed is sufficient to

illustrate the significant aspects of the non-steady state

behavior of the system and the influence of 8 and _ upon

this behavior.

Representative of the transient operation of this system

is the pattern shown in Figure ii for _=S0, A=0.1, and _=I0.

31
In this graph - _-_and C1 at Y=0 and 0.1, and _o are given

as functions of the dimensionless time, T, elapsed since

completion of the circuit. In its evaluation the conversion

of T to time in seconds according tO t=S00_ yields a better

insight into the significance of transient effects. In

Figure 12 current distribution over the front half of the

electrode is shown at several elapsed times, for the same

case as in Figure ll. Here the nature of the transient

effects can be clearly seen. The initial current densities,

except at the very face of the electrode, are depressed in

the locations where they are large, due to depletion of

reactant. Current densities toward the rear of the electrode,

initially small, change little until reactant is consumed

at these positions and then decrease. During much of the

transient process, the distribution of current is considerably

flattened over the rear portion of the electrode.

The transient processes take place over a characteristic
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time, here taken as the time over which the change in over-

potential between initial to steady state values is 90_

completed, which remains at approximately T90=0.6 over a

wide range of conditions. This corresponds to a transient

occurring over a period of 300 seconds.

Use of the Tafel type overpotential expression instead

of the redox expression leads to markedly different steady

state and transient behavior. Results of calculations of

the cases enumerated in Table II are given in Appendix V

for steady state and in Appendix VI for transient analyses.

Behavior for _=50, A=0.1, is summarized in the steady state

in Figure 13 and as a transient time plot for _=10 in

Figure 14. These figures are of the same format as tho_e

used for the cases calculated with a redox overpotential

expression. The marked influence of the difference in

overpotential relationship is apparent in comparing Figures 4

and 13 or ii and 14. This effect will be discussed in

Chapter 5. The electrode overpotential for the Tafel case

is depicted by a dashed curve in Figure 9, where it can be

seen to approach the behavior of the corresponding redox

case at very high current drain.

It is not intended that the results presented in this

section should be considered to represent the behavior of

any actual cadmium anode. Rather, they represent an illus-

tration of the application of the one dimensionalp0rous

electrode model, together with a description of the type of

behavior to be expected in such an electrode and the
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qualitative effect of system parameters upon this behavior.

An accurate overpotential expression would be needed before

any quantitative analysis could be undertaken. Moreover, the

discharge of a cadmium anode actually involves significant

changes in the properties of the matrix, associated with con-

version of the solid reactant, counter to the assumptions of

this model. Other factors, such as the solubility of Cd(0H)2

in the electrolyte further complicate the situation. The

present treatment, however, demonstrates the importance

deriving accurate characterization of kinetic and transport

phenomena for the system if performance prediction is to be

successful. It also indicates the importance of consideration

of operation in the mass transport transient condition.

104

8.5 Analysis of Ferri-Ferrocyanide Cathode

A reaction useful for possible experimental investigation

of current distribution in porous electrodes is the ferri-

cyanide-ferrocyanide redox couple, conveniently in Na0H

solution. This system has several desirable properties:

it is stable when light and oxygen are excluded; the reactant

and product are both dissolved species in the electrolyte,

allowing reaction to proceed with no slgaificant alteration

of the electrode matrix; the reaction does not involve

water; the reaction may be run cathodically to appreciable

overpotentials without hydrogen evolution; the electrolyte

and reaction are compatible with nickel electrodes; the

ionic strength of the solution remains relatively constant;

and, the system has been extensively studied and many of
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its properties are well established. For any practicable

current distribution measurement this couple has, however,

the severe limitation of a highly nonuniform current distribu-

tion at steady state in porous media. This will be discussed

later in this section. The ferri-ferrocyanide reaction in

Na0H is also representative of systems with excess inert

electrolyte; thus analysis of porous electrode using this

reaction will present a contrast to the binary system treated

in Section 4.2.

If the cathode is selected for analysis, the reaction

occurring is

-4
Fe(CN)65 - Fe(CN) 6 ----_- e

In a 2N Na0H solution the species present in the electrolyte

are Fe(CN)65, Fe(CN)64, Na+, and 0H-. These will be desig-

nated, in the order mentioned, by the indices 1 through 4,

giving

zI = -5; z2 = -4; z5 = +I; z4 = -i

vI = +I; v2 = -i; v5 = v4 = 0 (4.5-2)

o o -5+ 50_ +c 4 = 2 x 10-Sgmol/cmS; c 3 = 2 x 10 4c_ gmol/cm 3

In 2N Na0H, diffusion coefficients for the Na + and 0H-

ions have not been established as known functions of concen-

tration, as was also the case for K0H asmentioned in the

previous section. Using molecular diffusion data from

International Critical Tables 36, converted from 15°C to 25°C

(4.3-1)

This concentration is selected on the basis of availability

of data and suitability for suppression of hydrogen
evolution.
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by considering D_/T constant, the value DNa0H=I.6 x i0

cm2/sec is found for 2N Na0H solutions. This, taken with the

observation that at concentrations above i N, the anion

transference number is approximately 0.8 (see Landolt-

Bornstein57), gives D4=4.1 x i0 -5 cm2/sec. The value will,

however, be decreased in the presence of other components

in the electrolyte, as noted by Vinograd and McBain 38 among

others. Based upon quite subjective considerations the

approximation

D4F = 5.2 cm 2 coul/gmol sec (4.5-5)

has been selected for the diffusion coefficient-Faraday

product for OH-. No claim is made for the accuracy of this

choice, although it certainly is a sufficiently good approxi-

mation for this example. The corresponding value for Na +

is then

D3F = 0.8 cm 2 coul/gmol sec. (4.5-4)

From the data of Eisenberg, Tobias, and Wilke, the diffusion

-4
coefficients of Fe(CN)_ 3 and Fe(CN)6 in 2N Na0H at 25°C

are 0.527 x i0 -5 and 0.418 x i0 -5 cm2/sec, respectively. 59

The approximation

DIF = D2F = 0.5 cm2 coul/gmol sec (4.3-5)

is appropriate, considering the uncertainty of the other

transport parameter data.

The electrode kinetics of the ferri-ferrocyanide couple

have been reported for many conditions of reaction. The

data of Petrocelli and Paolucci, measured for 0.4M Fe(CN)_ 3

and 0.4M Fe(CN)64 in 2N Na0H on bright platinum seem

106
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appropriate for this analysis.

a redox type overpotential expression with

According to these authors,

= 0.5

i o = 0.025 amp/cm2
(4.3-8)

characterizes the reaction.

The electrode structure parameters for this system will

depend upon the nature of experimental apparatus that might

be chosen. If fissures or other artificially constructed

idealized pores are considered, practical values might be

a = 200 cm2/cm 3
(4.5-7)

= 0.35 cm.

No porosity conversion need be considered, the fluxes and

current densities referred to effective pore cross section

being appropriate in the context of this example. For this

analysis, equivalent transfer layer thickness will be taken

as zero except for a few cases when 8=0.03 cm was investigated

for comparison.

In analyzing behavior under a variety of operating con-

ditions the following values of ferro and ferricyanide con-

centration and of total current density have been chosen.

In all cases equal ferro and ferricyanide concentrations were

used.

0 0

cI, c2 = 0.02, 0.I0, 0.20 M

i* = 0.001, 0.005, 0.01, 0.05, 0.i0, 0.50 amp/cm 2 (4.5-8)

Because of the high exchange current density, a and

should be as small as permits electrode construction and
current distribution measurements.

107
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These values represent quite well the range of operation of

such a system that would be of experimental interest.

Corresponding to the values cited in the preceding

paragraphs, the input parameters characteristic of this

system are:

N = 4

zI =-5; z2 =-4; z3 = +i; z4 =-i

vI = +i; v2 = -i; v 3 = O; v4 = 0
(4,5-9)

v I = 0.156; v2 = 0.156; v5 = 0.250

_=0.5

= 80.

The operating conditions listed are represented by the

parameters:

A = 0, 0.i

71 = 72 = 0.01, 0.05, 0.i0 (T 5 = 1.07, 1.35, 1.70)

= 0.05, 0.15, 0.50, 1.50, 5.0, 15.0.

AS in the analyslsof the cadmium anode, not all possible

combinations of the operating parameters were subjected to

analysis. The cases calculated are listed in Table IV, the

selection being made to investigate the effects of varia-

tions of 8, T, and A, in each case with other operating para-

meters held constant.

The behavior of the ferri-ferrocyanide cathode as calcu-

lated for the steady state is detailed by the curves contained

in Appendix VII for each case considered. The curves are as

described for Appendix V in Section 4.2. In their interpreta-

tion the dimensionless variables involved may be converted

(4.3-io)
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TABLE IV

Cases of Operation Considered for the

Ferri-Ferrocyanide Cathode in 2N Na0H 40
(0verpotential per Petrocelli and Paolucci )

Case Number A Tl,T 2

BI

B2

B3(T)

B4

BS(T)

B6

B7

B8(T)

B9

BI0

BII(T)

BI2

BI3

BI4

0.0 0.05,0.05

0.01,0.01

0.i0,0.I0

0.05,0.05

1

0.05

0.15

0.50

1.5

5.0

15.

0.05

0.50

5.0

0.05

0.50

5.0

0.015

0.05
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to dimensional form as follows: pore current density (inlet)

is 0.02_ (amp/cm2); transfer current density is 3 x 10-4_ 8I
BY

(amp/cm 2 pore wall); distances are 0.35Y (cm); overpotential

is 0.0256 ¢ (volts).

The performance of the electrode at steady state is

summarized in Figures 15 through 17. The influence of current

drain, B, on transfer current distribution for _1=_2=0.05

and A=0 is illustrated in Figure 15. As was the case with

the cadmium anode, a limiting distribution is reached at low

values of _ which is not affected by further reductions in _.

In contrast with the cadmium anode case, however, the high

degree of nonunlformity of current distribution, even at this

limiting condition, should be noted. This phenomenon has

required that only one-tenth of the electrode be represented

on the distance axis of Figures 15 and 16, and that the

81
- _-_ axis be shifted up an order of magnitude from the

scale used in Section 4.2.

This nonuniformlty of current distribution is the result

of the comblned effect of the high exchange current density

(or parameter 6) for the system and the presence of the excess

inert electrolyte, NaOH. The latter influence is demonstrated

by observing the changes in current distribution occasioned

by altering the bulk concentrations of Fe(CN)63 and Fe(CN)_ 4

(simultaneously) as shown in Figure 16. This action is

equivalent, with appropriate adjustment of B and 6, to

changing the concentration of NaOH. The distribution of

transfer current becomes more uniform as _l and _2 increase

but remains highly nonuniform for any case where the system
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can even remotely be considered to contain "supporting

electrolyte".

Electrode overpotential is represented as a function

of _ in Figure 17. Again, as in the case of the cadmium

anode, the relationship is linear up to reasonably large

values of _ (2), the slope (position on the logarithmic

plot used) being dependent on the values of 71 and 72. Since

these curves represent the case for A=0, no limiting current

behavior occurs; rather, the overpotentials deviate nega-

tively from the linear behavior as _ becomes large and

approaching ultimately a proportionality to _. In no case

of steady state operation for the ferri-ferrocyanide cathode

is there any significant penetration of the reaction into

the depth of the electrode.

The behavior of the system under transient conditions

was analyzed for several of the cases previously enumerated,

these being designated by a "(T)" in Table IV. The calculated

results for these cases are contained in the graphs in

Appendix VIII. Typical of the transient performance of the

electrode is that for 71 = 72 = 0.05, A=0, _=0.5, which is

represented by the time plots in Figure 18. Here the initially

rapid rise in overpotential, and in transfer current density

at the front of the electrode, is apparent; the appropriate

time conversion is t = 3.4 x 103 T sec. The change in current

distribution with time is shown in another way by the curves

of Figure 19, representing transfer current as a function of

position at various elapsed times. The corresponding
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distributions of reactant and product concentrations are given

in Figure 20, where transient effects can be followed in the

absence of the concentration changes at the face of the

electrode imposed by an external transfer layer.

The initially moderately nonuniform current distribution

is altered with passage of time by the rapid depression of

reaction rate at areas sufficiently distant from the face of

the electrode to create inhibitions of reactant supply (and

product removal) and yet close enough to the face to have

favorable potentials. Increasing reaction rates are noted

for areas very close to the face, due to their favorable

accessibility to bulk electrolyte, and by areas deep in the

electrode, due to their store of as yet unused reactant@

The effects of increasing overpotential and consumption of

reactant (along with increasing product concentrations) tend

to create a very uniform current distribution in all but the

front part of the electrode during the transient. This

uniform level decreases and its starting location moves deeper

into the electrode as the concentrations approach their steady

state values and diffusive transport becomes important at

successively deeper points in the pores. The family of current

distribution curves at increasing times generates an envelope,

at least in the front portion of the electrode, which closely

follows the steady state distribution which will ultimately

_ .... IAA

_= _-_ac_1_d. Eventually the reaction occurs at significant

rates over only the narrow portion of the electrode previously

mentioned as active at steady state. The characteristic times



ll9

for this process, as defined in Section 4.2, vary over the

range of Tg0=0.01 to l, that is, 50 to 5000 sec.

This analysis of the behavior of the ferri-ferrocyanide

cathode indicates its disadvantages for steady state inves-

tigations of current distribution in porous electrodes, to-

gether with its suitability for some transient measurements.

The highly nonuniform current distributions at steady state

would preclude any measurements of such distributions. How-

ever, the initial distributions are sufficiently uniform

to permit design of meaningful transient experiments. The

transient effects are marked and take place over periods of

time well suited for experimental observation. For the case

depicted in Figures 18 and 19 current distributions over a

period of about 1 minute would fall in a range amenable to

measurement. Other, perhaps more suitable, systems can be

analyzed to obtain predictions of steady state behavior

which may be experimentally verifiable. Lack of basic

kinetic and transport data prevents this analysis in mos_

cases, at the present time.
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5. CONCLUSIONS

Certain general characteristlcs of the behavior of porous

electrode systems, at least as far as they can be represented

by the one dimensional model of this dissertation, will be

summarized in the paragraphs that follow. These behavior

patterns are significant. However, they do not constitute

the principal results of this investigation, but, rather, only

an illustration of the application of the end product of the

study. What was sought was n0t data but a procedure that would be

used to develop performance predictions for electrode systems

of interest. Such a procedure has been developed and has

been demonstrated on the calculation of behavior of realistic

systems. The limitations of this work lie in the limitations

on applicability of the procedure, as enumerated in Chapter 2.

Its value lies in the ability of the procedure to analyze

performance of a flooded porous electrode, given complete and

accurate data for the transport and kinetic behavior of the

system involved.

S.l Behavior of Porous Electrode Systems at Steady State

The operation of a flooded non-flow, porous electrode at

steady state is characterized by a moderately to highly non-

uniform distribution of electrode reaction (transfer current)

in depth in the electrode (see Figures 4, 5, 6 and 15). This

nonuniformity profoundly affects the overpotential-current

relationship for the electrode causing it to deviate widely



from the overpotential expression for the reacting system.

At low currents the relationship is linear (but does not have

the same slope as the local overpotential expression at

vanishing transfer current). At higher currents it deviates

toward lower overpotentials from this linear relation, except

in the presence of external resistance to transport of the

reactant to the electrode face (equivalent transfer layer),

when, of course, it increases sharply as limiting current

is approached. The general overpotential behavior of a

porous electrode cannot be simply described nor easily deter-

mined from the overpotential expression for the reaction.

Such approximations as that proposed by Ksenzhek are appli-

cable only under extremely restrictive conditions. Each case

of interest must be separately analyzed. The nonuniform

current distribution alsoreduces the portion of the electrode

which significantly contributes to the electrode reaction

(see Figure 10). In many electrodes only a very narrow

portion adjacent to the face is effective.

The distribution of transfer current in an electrode

becomes more nonuniform with increasing values of the para-

meters _ and B, and decreasing values of 7 for the reactant.

Ksenzhek 16 proposed that the overpotential for a porous
electrode, with a reaction represented by a Tafel type
overpotential expression, was a llnear function of the
logarithm of current density with a Slope equal one-half
the Tafel slope for the reaction. To do this he assumed
the potential was constant throughout the electrolyte
in the pores.
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Thus high values of exchange current density, specific

electrode surface, or electrode depth, all of which lead to

high _ values, and high current drains, which give high

values, cause nonuniform distributions. These conditions,

with the exception of large electrode depth, are commonly

encountered (and desirable) in porous electrode applications.

If _ is decreased, that is, if lower current drains are

considered, the current distribution becomes more uniform only

up to a point, approaching a limit which still may be very

nonuniform. This effect can be observed in Figures 4 and 15.

Lower values of _ again lead to more uniform electrode reac-

tions only within the limit imposed by the nonuniformity of

the distribution at 6=0. This latter case corresponds to

the distributions calculated with a Tafel type overpotential

expression, such as those shown in Figure 13.

By and large, the nonuniformity of reaction at the steady

state is not subject to control without incurring other un-

desirable effects, principally increased overpotential.

5.2 Transient Behavior in Porous Electrode Systems

The transient behavior of alporous electrode system,

taken in this work to be the behavior over the period from

completion of the circuit until steady state is achieved at

constant current drain, involves the complex phenomena of

reaction distributions which are not only nonuniform but

changing with time. The course of such a transient process,

leading from a moderately nonuniform initial state to a

highly nonuniform steady state, has been described in some
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detail In Section 4.3 and illustrated in Figures 18, 19, and

20 (along wlth others). It Is significant to note that

although the reactant content is but slowly dep&eted In those

deep portions of the electrode where transfer current den-

sities are small, reactant supply from the electrolyte In the

depth of the electrode to the areas near the face where

reaction rates are high Is usually quite small compared to

supply from the electrode face. Thus the presence of a

reservoir of reactant in the pores often significantly

affects the course of the process only In those parts of the

electrode where very little current is transferred.

The transient processes are characterized by times (to

say 90_ of total overpotential change as cited earlier)

on the order of i0 to l0 b sec. Since many applications of

porous electrodes involves operating periods which are not

long compared to thls time range, transient behavior should

be carefully considered in analysis of cells involving

porous electrodes. The magnitude of the characteristic time,

in dimensionless form, is relatively constant over wlde

ranges of operating conditions for cases where migration is

the most significant reactant transport mechanism, that is

for binary electrolytes. In this case changes in concentra-

tion have no effect on the dimensionless representation, and

increasing current increases reactant transport as well as

consumption. For cases where migration is only a secondary

reactant transport means, excess inert electrolyte being

present, the duration of the transient phenomena are strongly
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influenced by manner of operation. Here, characteristic

times are decreased by increasing _ or decreasing T of the

reacting species, corresponding to raising current drain and

to lowering reactant concentrations, respective]y. If the

reactant (and product) are transported almost entirely by

diffusion, T90 is roughly proportional to _ and to 1/8.

However, for most systems transient periods would not be short

for any practicable combination of these parameters. Kinetic

parameters have a relatively small influence on the character-

istic times. Decreasing the depth of the electrode reduces

the duration of transients, but, because of the effects

mentioned in the preceding paragraph, not so much as the

dependence of the T tolt conversion upon _2 would lead one

to expect. For systems where the reactant species are in

large concentration, as in most batteries, the transients are

quite long and relatively independent of current. Operation

in the steady state may be the exception rather than the rule.

It was mentioned in Section 2.1 and developed in

Appendix I that time constants for transient behavior in

porous electrodes would be long compared to electrical time

constants for discharge of double layer capacitance. This

is now clearly seen to be the case, the electrical time

constants having typically values in the range of l0 -4 to

l0 -1 sec. This constitutes additional Justification for

ignoring capacitative terms in equation (2.1-9) and those

developed from it, in spite of the importance assigned to

their effect by some previous investigators (see Section 1.2).



125

5.5 Influence of 0verpotential Expression

The calculational procedure developed in this investiga-

tion was based upon no particular form of the overpotential,

or electrode reaction rate, expression. However, as discussed

in Section 2.4, the Tafel and redox type overpotential

relationships were selected for use in example calculations,

the redox type being considered a realistic representation

for most electrode reactions which might be encountered.

However, other choices could be made for such expressions,

based upon the kinetics of the electrode reaction involved.

The nature of the rate (overpotential) expression used in

the analysis of a porous electrode to a very large extent

determines the behavior that will be predicted for the elec-

trode.

The effect of the choice of overpotential expression

upon the analysis is well illustrated by the case of the

cadmium anode, described in Section 4.2. This electrode,

for _=50. and A=0.1 has been analyzed using, in turn, the

redox type expression, the Tafel representation corresponding

to this redox expression at high overpotential, and the

linear formulation corresponding to it at low overpotential

(and in the absence of concentration overpotential-see Section

2.4). The current distributio_ resulting from these analyses

at 8=1.0 are presented in Figure 21 and the electrode over-

potential curves in Figure 22.

For the case chosen, the Tafel expression yields current

distributions which are much too uniform, compared to the
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Figure 2 1. Current Distribution at Steady State for

Cadmium Anode (SN KOH). _ = 50., A = 0.i,

_ = i.o.
(Calculated using overpotential expressions
indicated. )
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indicated)
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distributions calculated with the redox formula. The linear

expression here gives behavior that deviates only moderately

from the redox case. At a higher value of _ the Tafel

based curve would more closely approximate that for the redox,

while the distribution resulting from the linear approxima-

tion would deviate much more widely. At very high values

of _ the Tafel and redox expressions yield current distribu-

tions which are almost identical in that portion of the

electrode where significant reaction takes place. However,

this only occurs at values of G which are too large to

correspond to any practical condition of electrode operation.

At vanishing values of _ the redox based curve and that

derived for the linear approximation are identical.

The overpotential behavior of the electrode, as based

on a redox type expression, is compared to the behavior

for Tafel and linear type expressions in Figure 22. The

overpotentials predicted by the Tafel form are asymptotic

to those predicted with the redox expression as _ becomes

large (here _=20 corresponds to limiting current). The linear

approximation gives overpotentials close to those calculated

for the redox case at small G, but the limiting slope of the

latter overpotential curve at low _ does not correspond with

the slope of the straight line overpotential relation

resulting from use of this linearization. Most significantly,

over the range of _=l to 10, which corresponds to the

conditions of operation expected for a cadmium anode, analyses

based on the Tafel or on the linear expression are inadequate_
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They predict electrode performance not even remotely approxi-

mating that from an analysis based on the redox overpotential

equation.

It can be concluded that the type of overpotential ex-

pression utilized in the analysis of a porous electrode,

and the values of the parameters used in that expression, is

critical. The redox type formulation has been shown to be

valid for a number of systems (see Vetter 22) but cannot be

assumed arbitrarily. The use of a Tafel type expression may

be valid for some systems, but its employment as an approxi-

mation to a redox form is clearly counterindicated. Such an

analysis could have value only under conditions where the

reverse term in the redox expression is negligible in all

portions of the electrode where significant reaction takes

place; this condition usually requires prohibitively large

overpotentials. The linearization of the redox expression,

around vanishing overpotential or any other chosen over-

potential value, can have validity only over a narrow range

of overpotentials, and thus of transfer current densities.

However, porous electrodes are characterized by a simultaneous

existence of wide ranges of transfer current densities at

different positions in the electrode. The only condition

to which such an analysis might reasonably be applied is

that of vanishing current drain. In using any overpotential

expression in analyzing porous electrode behavior, the effect

of v_±ations in the form and in the parameters of the

expression within the range of their uncertainty must



certainly be investigated. The use of several values of

exchange current density in Section _.2 is an example. It

may be found that in many cases meaningful analysis of the

behavior of the electrode system, is not possible without more

precisely known overpotentlal expressions.

5.4 Proposed Extensions of the Investisation

This investigation has established a model for a flooded

porous electrode with no hydrodynamic flow of electrolyte in

the pores, and, from this model, developed a procedure for

analysis of the dynamic behavior of the electrode. In

defining and analyzing this model certain limitations have

been imposed by assumptions introduced concerning the system

and its behavior. While certain of these assumptions (e.g.,

that of constant transport parameters) are necessary because

of lack of data for alternate treatments, this work could

be extended to eliminate the necessity of others. Such

extensions would logically include the introduction of flow

terms in the flux equations (and corresponding source terms

in the conservation equations) to account for the generation

(or elimination) of electrolyte volume in the course of the

reaction and the consideration of electrode matrices which

possess significant electrical resistance.

Also, a pressing need exists for extension of this sort

of analysis to cases where the properties of the electrode

matrix change in course of the charging or discharging of the

electrode. All real battery systems fall in this category.
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Unfortunately, little is known about the nature of these

effects on a local basis at the present time; such a know-

ledge is prerequisite to incorporation of these considera-

tions into porous electrode analysis. However, models should

be developed which account for such phenomena in a general

way and can be adapted to the characteristics of a particular

matrix when these become known. Some first efforts, of a

very approximate nature, have been made in this direction

by Winse118.

Finally, experiments confirming the results of applica-

tions of this procedure are required. These should include

measurements of overpotential as a function of current drain

and distribution of transfer current in depth for well

described porous electrodes of both random (sintered, etc.)

configuration and idealized geometry (micro fissures and

cylinders). The current distribution measurements require

sectioning of the electrode in depth without destroying its

uniformity, a difficult undertaking where resolution to

fractional millimeters might be required. Such experiments

could only be based upon a redox system for which complete

and accurate overpotential and transport properties were

available due to the sensitivity of the analysis to these

factors, particularly the former. The ferri-ferrocyanide

couple discussed in Section 4.3 meets these requirements as

well as any other available, but even here, uncertainty

in diffusion coefficients and exchange current densities would

limit verification to qualitative comparisons only.



Ultimately, the significance of this work consists

primarily in three aspects: First, it relates the dynamic

behavior of flooded porous electrodes to the basic transport

and kinetic phenomena determining such behavior. Second,

it demonstrates the general characteristics of the transient

and steady state performance of such electrodes and the in-

fluence of conditions of operation upon the performance. And,

third, it provides a method of predicting performance of

systems for which adequate basic information is available.

At the same time, this analysis again indicates the great

need for accurate fundamental data for electrochemical systems.
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APPENDICES

APPENDIX I

Capacitance Effects in Porous Electrode Dyamics

If the considerable capacitance of the electric double

layer over the extended interface in a porous electrode is

considered, it is apparent that the expression given in

Section 2.1 for conservation of current should also include

a capacitive term. Thus equation (2.1-9) would become

(i-l)

shown by Ksenzhek 16, with a time constant

8el = pa c _2

where p = effective resistivity of electrolyte in pores(ohm cm)

= characteristic dimension of system (cm).

The time constant for the mass transport process is of the

order of the diffusion time constant

_2

8dif = 5-- (I-5)

Using a typical value for electrolyte resistivity of

the order p = 1 ohm cm, for surface area of a = 105 cm2/cm 3,

and for surface capacity of 20 _F/cm 2

2_2sec
8el

where c = interface capacitance per unit area (F/cm2).

However, _t is significant only during the initial charging

of the capacitance (at switch-on time). This proceeds, as



which is in agreement with the results of Euler 14 if

= 10-2-10 -5 cm. Similarly using a value of D = 10-5cm2/sec

it is seen that the order of magnitude of the diffusion time

constant is

edif __ 105 _2 sec

Comparing these results

e
el ~ 2 x 10 -5

_dif

and therefore the capacltative effects occur only in the

ve__ first part of a transient process. For the purpose of

this study they can be considered as completed instantaneously

and thus ignored.
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APPENDIX II

Formulation of 0verpotentlal Expressions for

Numerical Analysis

The overpotentlal expressions chosen for discussion in

Section 2.4, the Tafel and redox types, may be put in the

form of equation (3.2-1) as follows:

Tafel: p(¢,Ci)= Cr{yX_r exp [a_u¢]}
(II-1)

_edox:

• J_r
. Aj =, (_I-,2)

i-exp [an¢] J:r
Yr

/

I( X-- exp [_n_ ] j_r
r _¢r

Bj =I0 (II-3)J=r

- C "X.- {_p xp[(_-l)n*]}(II-4)p(¢,C1).- r{_r exp[and>]} +Cp

Aj =_

o j_r,j_p

_-- exp [cLn¢] J=r
_r

exp [(_-l)n_] J=p

Yp
]

(H-s)

_._r lexp[y_p (a-l)n$]} J_r,_p

Bj =_ - i X exp[ (_-l)n¢] j=r (II-6)
Yp

cr
_r X exp[an¢] J=p

In finite difference form Aj,Bj are evaluated In terms of

and Ci for a given Y and T index, that is In terms of _(J,K),

CI(J,K ), and may thus be expressed as Aj(J,K), Bj(J,K)



APPENDIX III

Acco_odation of Source Term Discontinuities

in Finite Difference Representation of

Conservation Equations

The species source term in equations (S.3-10) exists

only in the electrode proper (Y _ 0) and is zero in the

equivalent transfer layer (-& • Y • 0). A difficulty arises

in assigning values to this te_ at the point of the finite

difference approximation corresponding to Y = 0 (at the face

of the electrode). In order to find the correct source

te_ for this point consider (3.3-I0) applied in the trans-

fer layer (primed variables)

_ =--_+z_ _ +_ _03_ C , (III-l)

and in the electrode proper

I _CJ _C" ( _ 8C"_)_ zj Cj: + + +

with appropriate boundary conditions at Y = -A and Y = i,

and with the linking conditions at Y = 0

C_ = Cj ; _' = • (III-3)

-_j + zjc_3_'] -_J + zjcj_ ,y_-j = (III-_)

equation (III-4) being equivalent to

3cj 3c _' _ (Ill-s)yBF-=_ i ; yBy-=By.

In finite difference form, using the notation of Section 5.5,

(III-1) and (III-2) become

3T56
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2 -2] J,K)

+ +zj ' 4 _(J+I,K) = F_(J,K) J=I,LF (iii-8)

and for J=LF,L

I P(J,K)]c (J+I,K) = Fj(J,K)+TjBj(J,K)+ +zj 4 J J

(_-z__ _= F'(J,K)+j J --K a----"(J'0)+TjBj(J'K) (zn-7)

with the linking conditions

C_(LF,K):Cj(LF,K); P'(LF,K):P(LF,K); Q'(LF,K):Q(LF,K)

(III-8)

C_ (LF+I,K)-C_ (LF-1,K)

2h 2h
: Cj (LF+I,K)-Cj (LF-1,K)

(III-9)

Substituting (III-9) and (III-8) into (III-6) taken at J=LF

•

, ,zj : F_ ). (III-lO)

Then solving (III-I0) for Cj(LF-I,K) and substituting this

result into (III-7) taken at J=LF

, E-! 4 J2 C_(LF-I,K)+I_,.-p?T._'_"In +ii X

. ]
{zj%(_,'_)-b---_-*-}-h"j (LF,K)JCj(-_,K)+*-Oj(_'+_-,K)

I

+ F_ (LF,K)+(Tj, -zj.,_- _j>k (LF, 0)+TjBj (LF, K)

h2

(III-ll)
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[l+zj P (LF'K) ]results. If this is multiplied by 4 /2 and it is

noted that C" and C_ no longer overlap so that the prime can be
0 0

dropped, the expression sim _lifies to

zjQj (LF,K)- [l+zJP ('I_4_K)]TjAj(LF,K)2

2 I Cj (LF,K)+ - j

_ _ \+zjP(_,K)cj(_+l,_)

: " +T B (_F,K)

(Ill-12)

Therefore, at J=LF, the finite difference approximation is

the same as within the electrode (J_LF) but with the source

terms Aj(LF,K), Bj(LF,K), and Bk(LF,0) weighted by the

factor

1 v(Lv,K)
' 2 =F+zj 8

(III.15)
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APPENDIX IV

FORTRAN II Program for Implementation of Calculations

The analysis is implemented for an IBM 7090 digital

computing system by a FORTRAN II program. This consists in

a main routine (CODE-1), which merely prepares input para-

meters for calculation, a principal subroutine (ODE), in

which most computations are performed, and several accessory

subroutines (INTEG, TDIAG, PDIAG, STEP), which carry out

certain detailed aspects of the calculations. A subroutine

(TFC) is used to introduce whatever overpotential expression

may be desired, and another (PHIFE) to provide initial

estimates of @.

The program input (to CODE-1) consists of five punched

cards per case, as follows:

i. (I4, 9F4.0, 4F8.3): N, Zl,---,zs,vl,---,v4,_l,---,_ 4

3. (4F8.4, E12.5, F8.4): Tl,---,_4, _, A

4. (5E8.1): h, go' ¢1' e2' Cins

5. (814, F8.2, 28X, I4, F8.2): M1, M2, M3, M4, NR,

MP, MK, MNI, TML, M7, FDAMP

The last card listed above is for control of program options

where the indicators have the following significance:

M1

M2

M5

(1 = STEADY STATE; 2 = TRANSIENT)

(i = NO ITERATION OUTPUT; 2 = ITERATION OUTPUT)

(! = NO AUX OUTPUT [TIME, ITER. COUNT]; 2 = AUX OUTPUT)
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M4 (I = EXIT ON ELAPSED TIME; 2 = EXIT ON ITERATION

COUNT; 3 = EXIT ONLY ON CONVERGENCE)

NR (0 = NO BINARY TAPE OUTPUT; _ 0 = BINARY TAPE

WITH CASE NO. = NR)

MP (NO. OF CALCULATION PTS PER OUTPUT PT)

MK (NO. OF TIME STEPS CALCULATED PER OUTPUT)

MNI (ITERATION LIMIT FOR EXIT)

TML (TIME LIMIT FOR EXIT)

M7 (0 = ALT. ¢ CALCULATION & FIXED CURRENT; 1 = ALT

CALCULATION & FIXED POTENTIAL; 2 = FIXED CURRENT;

5 = FIXED POTENTIAL)

FDAMP (0 = MAX DAMPING FACTOR = i; > 0 = MAX DAMPING

FACTOR = FDAMP).

Within the programs, the following equivalences exist

between FORTRAN variables and external variables.

NC N

v(I) vi

z(I) zi

P(I) _i

G(I) _i

DELTA A

BETA f5

ALFA (_

PC x = _/_

PE I_

PN n

NOTE: I = 1,5

H h
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DTI

DT

EPS

DEV

CINSIG

C(J ,_)
\

 PHI(J)

PHIS (J)

TC(J)

Y

TAU

L

LF

PHI1

FK(J,I)

FKP (J )

A(J)

h(_)

DR(J)

hP_ (J)

DC(J)

DC2 (J)

CAPPA

FL(I)

FLK(1)

Other FORTRAN

gO

g(K)

c1

e2

Cins

Ci (J,K)

¢(J ,K)

¢*(J,K)

[-8I/3Y] (j,K)

Y

T

L

LF

¢(1)

Fi(J,K)

Fp (J ,K)

A(J)

h(J)

P(J ,K)

Q(J,K)

R(J ,K)

S(J ,K)

K

i/_i(K)

1/_i(K-l)

variables are as defined in

J

the

= 1,250

routine

concerned.



The program output is in the form of printed tables of

8I (called J) _, and Ci at regular intervals of Y, a- B_

table being printed for each MKth time step. Values of
3i

- B-_ at Y = 0, 1. by 0.1 can be printed at each iteration as

desired (M2 = 2). Error terminations and failures to con-

verge give diagnostic outputs.

The main program , CODE-l, and principal subroutine, ODE,

are listed below. They are followed by the necessary acces-

sary subroutines. Examples of the subroutines TFC and PHIFE

are also listed; however, these programs should be written

(with connection to ODE as in the example) to correspond

to the overpotentlal expression in effect and the associated

estimated behavior.
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MAIN PROGRAM- DATA READ IN AND SET UP
CCOD[-I ANALYSIS OF ONE DIMENSIONAL pOROUS ELECTRODE SY3TEM
C 17 MAY 63 - E A GRENS

01 FORMAT{1499F4,0,4FB,3)

02 FORMAT(FB.B,2E12.3)

03 FORMAT(4F8,4tEI2.3_F8.4)

04 FORMAT(5E8.1)

05 FORMAT(BI4oFB,2_28XoI4oF@,2)
11FORMAT{BHIFOR THEtI2_51H COMPONENT SYSTEM CHARACTERIZED BY THE PAR

IAMETERS -)
12 FORMAT(5XtlHZtI191H=_F3,O_9Xt1HVtIItIH=pFB.OtPX_lHPpIl,lH=,F6.3,

I 9X,IIIG_II,IH:,FT.4)

13 FORMAT(SX,5HALFA=,FS,2,SX,3HXI=_IPE9,2,}X,6HDELTA=_OPFT.4t5X_

I 5HBETA=,IPEP,2_2BX,A6p14H POLARIZATION))

14 FORMAT(19HOCALCULATED WITH H=,IPEB,1,5H_ DT=_IPEB.I,IOH, EPSILON=,

i 1PE8,1_6H, DEV=91PEB.1_9H9 CINSIG=pIPE8,1)

15 FORMAT(IOOX,TH(RUN NR,I4_IH))

DIMENSION Z(5)pV(5),P(5),G(5)pDUMI(3TSO)tDUM2(2)

COMMON DUM1,ALFA_HtDUM29NCpDUM3pPCtPE_Z_VoP_GpBETAPDELTA_DT,

1 EPS,DEV,CINSIG,DTI
NRS=O

READ CARDS CONTAINING SYSTEM AND OPERATION PARAMETERS

20 READ INPUT TAPE 2_ItNC,IZII),I=I_5),IVII)tI=I,4),IPII),I=I,#)

30 IFINC)31_31921

31 IF(NRS)33,33932

32 CALL REWUNL(8)
33 CALL EXIT

21 READ INPUT TAPE 2,2,ALFA_XIPPE

READ INPUT TAPE 2,3_(GII)tI=I,4),BETAtDELTA

READ INPUT TAPE 2,4,H_DTItEPS,DEV,CINSIG
READ INPUT TAPE 2_5tMI_M2tM3tM4tNRtMP,MK_MNI_TMLpM7tFDAMP

SET UP BINARY TAPE FOR RECORDING OUTPUT IF NR NOT 0

GO IF(NR)22,22941

41 IF(NRS)42_42,22

42 CALL REWIND(8)
NRM=NR-I

NRS=NRS+NR

CALL POSITT(8,NRM,O)

CALL ETTEST(8,1NDIC)

IF(INDICT43,22,43
43 NR=O

ESTABLISH PARAMETERS FOR. I=NC

22 V(NC)=Oo _

P(NC):I°

G(NC)=I.

CALCULATE Xl

PC=Xl/BETA

PRINTOUT PARAMETERS DESCRIBING CASE

TO IF(ABSF(PE-1.)-O,O01)71,72_?2
T1 TYPE=6H(TAFEL

GO TO _

T2 TYP[=6H(REDOX

23 CALL ST_PITDTM,I)

25 WRITE OUTPUT TAPE 3_11,NC

50 iFiNR)26,2.6_51

51 WRITE OUTPUT TAPE 3,15,NR

WRITE TAPE 8,NR

WRITE TAPE 8,NC_(Z(1)_I:I_NC),(V(1)_I=I,NC),(P(1),I=I,NC),

1 (G{I),I=I,NC),ALFA,XI_PE,DELTA,BETA

26 DO 27 I=I_NC
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27 WRITE OUTPUT TAPE 3,12,I,Z(1),I,V(1),I,P(1),I,G(1)
WRIIE OUTPUT TAPE 3,13,ALFA,XI,DbLIA,BETA,TYPE
WRITE OUTPUTTAPE 3914_H,DT,EPS_DLV,CINSIG

GO TO &UBROUTINEODE FOR COMPUTATION OF CASE
28 CALL ODEIMItM2_M)tM4tNRtMP_MK_MNI_TMLtM_tFDAMP)

WRITE END OF FILE ON BINARY TAPE IF USED

60 IFINR)20,20961

61 CALL EOFI8)

GO TO 20

END



145

oUBROU,INE ODE(MI,M2,M3,M4,MN,MP,MK,MNI,TML,M7,FDAMP)i08 _

C SUBROUTINE FOR ANALYSIS OF ONE DIMENSIONAL POROUS ELECTRODE SYSTEM
C 12 JUL 63 - E A GRENS
NOTE - ALL SECTIONS WITH STATEMENT NRS IN M// SERIES CONCERN FIXED PHI(1)

CALCULATION OPTION

101 FORMAT(9HOFOR TAU=,IPEIO,B,6H AT Ne,14,6H, TEL=,OPF6.2,6H, ERR:,

llPEIO,_,7H, DAMP=_OPFG,2,_2M_ AN_ THE VALUES OF J FOR Y VROM 0 rO
21 (BY 0.i) ARE}

132 FORMAT(10X,1P11E10.3)
103 FORMAT(6HOAFTER,15,15H ITERATIONS AND,FG.2,44H MINUTES INITIAL POT

1ENTIAL HAD NOT CONVERGED)

104 FORMAT{46HOTHE STEADY STATE CONDITION OF THE SYSTEM IS -)

i05 FORMAT(9X,26H(THE CALCULATION REQUIRED ,FS.2,12H MINUTES AND,14,

112H ITERATIONS})
,

106 FORMAT(8HOAT TAU=,lPEIO.3,33H THE CONDITION OF THE SYSTEM IS -)

S_T&.

117

ii0

119

120

ESTABLISH PRINTOUT

CII(I)=2HCI

107 FORMAT(8HOAT TAO:,IPEIO.3,4H, N=,Ik,67H, CALCULATIONS WERE TERMINA

1TED AT VALUES BELOW. TOTAL ELAPSED TIME:,OPFG.2,8H, ERROR=,

21PEI0.3)
108 FORMAT{22HOFOR TAU GREATER THAN ,1PEIO 3,43H, THE SYSTEM iS ESS _ 'T

IIALLY AT STEADY STATE)
109 FORMATIIHO,3X,IHY,12X,IHJ,14X,3HPHI,13X,A2,14X,A2,14X,AZ,14X,

IA2,14X,A2)

ii0 FORMAT (IX,FG,3, IPTEI6,4 )

III FORMAT(54HOLIMITING CURRENT IS D_^r-,cn WITH RESPECT TO COMPON c_'T

I12)

DIMENSION Z(5),V(5),P(5),G(5),TCS_,FL(5),C{250,5),CSS(250,5),

1 PHIS(250),PHI(250),P_ISS(Z<_),TCS(ZSO)_TC(250),TCP(250)'vv

2 TCSS(250),FK(25Op4),FKP(250),DP(250),DP2(250),DC(250.),

3 DC2(250),QM(250),Q(250),QP(250),R(250),A(250),B(250),U(250),

4 FLK(5),PHISO(25C),TCO(250),OC(5),TD(5),CH(5),PHIIN(250),

5 AOI250,G),BOI250,4},PHUS(250),CNCO(250)_PHILT(250)

COMMON A,B,TCS,TCP,OM,Q,QP,R,PHIS,PHI,C,ALFA,H,LF,L,NC,PN,PC_PE_

I Z,V,P,G,BETA,DELTA,DT,EPS,DEV,CINSIG,DTI,INC,LFM,LFP,LI,WF,

2 IR,IP,N,M7,CIGNOR,KTYPE,KEY,KFLD,KINIT,PHIFAC

UP OVERPOTENTIAL EXPR r '_SS,ON OPTION

IF(ABSF(PE-I.)-O.OO!}ilU,!ID,II9

KTYPE=I
GO TO 120
KTYPE=2
CALL CLOCKT(TIS)

COLUMN HEADINGS

-_HC_

CIt (3 ) --2HC3
CH (4) =2HC4

H_CH(5)=2 "-'
INITIALIZE INTERNAL

124

125

PARAMETERS

126

PN=O.
N CM- "' _

PN:PN+VIIi*Z(1)
S=0.
DO 127 I_I,PC

127 5 .... C')*Z _P{-_*_ . (I) !)*G(1)

CAPPA:S/IPN*BETA)

T4=I;::}_ICAPPA

TIO=PN*BETA_H

128 DO 129 I:I,NC

TD(!_:2.*H_H/P(1)



130 GO TO (133,131)tKTYPE 146
131 IXP=XFIXF(LOGF(CINSIG}/4.6)
132 CIGNOR=IO._*IXP

60 TO 135
133 CIGNOR=CINSI6
135 IF(FDAMP-O.01)136,137,137
136 DAMAX=I.

GO TO 138
I_7 DAMAX'FDAMP
138 DAMCK=DAMAX+O,01
140 L=XFIXF((1,+DELTA)/H)+I

LF=XFIXF(DELTA/H)+I
LM=L-1

LFM=LF-1

LFP=LF+I

LI=LF-(LFM/MP)_MP

INC=XFIXF(O.I/H)

IR=O

IP=O
K=O

DO 143 I=1,2
IF(V(1))I41,143,142

141 IP=I*(KTYPE-I)
GO TO 143

142 IR=I

143 CONTINUE

IF(IP*IP-IR_IP)3999144t144

144 PHIFAC=I.
IF(NC-2)148,148,145

CHARACTERIZE SYSTEM AS TO PRESENCE OF EXCESS INERT ELECTROLYTE

145 DO 147 I=I,NC

IF(V(1))147,147P146

145 IF(G(1)-O.25)147p148t148
147 CONTINUE

KFLD=I

GO T0'150

148 KFLD=2
SET UP CALCULATION PROCEDURE OPTIONS

150 GO TO (151,153),KFLD

151 IF(M7-2)152o153,153

152 KMP=2

GO .TO 156
153 KMP=I

ESTABLISH INITIAL DAMPING

GO TO (154,156),KFLD

154 GO TO (155,156},KTYPE
155 DAMS=I.

GO TO 600
156 DAMS=O.9_*6

BINARY TA, _ OUTPUT (OPTIONAL.

600 IF(MN)157,157,601

601 INT=XFIXF(O _.u_IH}

LIT=LF-(LFM/INTI*INT

YI=FLOATF(LIT-1)*H-DELTA

WRITE TAPE 8,YI

BYPASS STEADY STATE CALCULATION IF MI=3

157 GO TO (160,150PI58},Ml

158 KINIT=I

CALL PHIFE

DO 159 J=I,L



i_7

159 PHISSIJ}=I.2*PHI(J)

GO TO 200

SET UP STEADY STATE CALCULATION

i60 DAMP=DAMS

161N=I

MC=O

KP_l

ERR=O.

CALL CLOCKT(TI)

KEY=2

KINIT=I

TAU=9,999E+33

CALL PHIFE

DO 163 J_I,L

DO 162 I=I,NCM

CIJ,II=G{I)

162 7K(J,I}=O.

FKP(J}=O.

PHIS{JI=PHI(J}-PHI(1)

163 PHISO(J)=PHIS(J)

DO 164 I=I,NC

164 FL(1)=O.

DO 165 J=LF,L

165 TC(J}=I.

CONDUCT PROCEDURE FOR A TIME STEP WITH STEADY STATE SET UP

GO TO 400

PRINT STEADY STATE RESULTS FOR STEADY _TAT£.CALC ONLY

170 GO TO (171,180},MI

171 WRITE OUTPUT TAPE 3,104

GO TO (610,172),M3

172 WRITE OUTPUT TAPE 3,105,TEL,N

BINARY TAPE OUTPUT (OPTIOF_AL)

610 IF(MN}173,173,611

611 WRITE'TAPE 8,TAU

DO 612 J=L[/,L,!_:T

612 WRITE -,no,.,,- 8,TC(J),F'HI(J',{C(, .i,i),[: I,NC)-

173 WRITE _"TPUT_ TAPE ._,109,(rH(I),I_I,NC). -

.. _ J'LI,L,MP

GO TO (174,178),M3

174 DO 1-76 :=I,NC

IF(C{J,I)/G(1)-CIGNOR)I75,175,176

173 C(J,I)=O,

176 CONTINUE
[F(TC(J)-IO.*CIGNOR)I77,177,178

177 TC(J):O,

178 ','=FLCATF(J-1)_H-DELTA

179 WR,T_ OUTPUT TAPE 3,110,Y,TC(J),PHI(J),(C(J,I),I=I,NC)

RETURN
SAVE STEADY STATE RESULTS 1_ TRANSIENT CALCULATIONS

iGO DO 1 _ J=I,L

DO 181 I=I,NC

181 CSS(J,I):C(J,I)
T C,CS_(J)=TC(J)

182 PHISS(J)=PHI(J}

NS:N

TELS=TEL

BINARY TAPE OUTPUT (OPTIONAL)

6i5 IF(MN}200,200,616

616 WRITE TAPE 8,TAU



617 WRIT=,_TAPE 8,TC(J),PHI(J),CC(J,I),I=I,NC)
SET UP CALCULATION AT TAU =0

200 N_I
MC_O
KP_I
KEY=I
KIEWIT=2
_'_P=0-
DAMP-DAMS
PHIFAC=I°
CALL CLOCKT(TI)

201 CALL PHIFE

DO 202 J:I,L

PHIS(J)=PHI(J)-PH!(1)

DO 202 I=I,NC

202 C(J,I)=G(1)

WF=0.5

CONDUCT CALCULATION AT TAU:O

210 CALL TFC(PHII,NC,1)

DO 211 J=2,L

QM(J)=I.

GP(J;=I.

211

212

213

214

215

700

701

702

703

217

218

2I 9

220

221

222

223

224

225

226

227

704

22G

230

7O5

706

707

G(J)=-2.-T4*PC*PN*FLOATF(KTYPE-I)

S(J):T4*IB(J)-PC*PN*PHIS(J)*FLOATF(KTYPE-1))

CALL TDIAG(I,L,0.,PHUS)

IF(N-I)212,212,214

DO 213 J=!,L

PHIS(J)=PHUS(J)

GO TO 700

DO 215 J=I,L

PHIS(J)=PHISO(J)*(I.-DAMP)+PHUS{J)*DAMP

GO TO (217,701),KP

CALL TFC(PHII,NC,4)

IF(M-2)230,230,702

IF(ABSF(TCP(LF)-TC(LF))-CIGNOR)222,222,703

IF((TCP(LF)-TC(LF))*(TC(LF)-TCO(LF)))224,222,222

CALL TFC(PHII,NC,2)

IFINC)483,483,218

IF(N-2)230,230,219

IF(ABSF(PHII-PHI(1))-EPS/10.)222,222,220

IF((PHI1-PHI(1)}*(PHI(1)-PHIIO))22#,221,221

IF((PHII-PHIII))*(PHIIO-PHII02))224,222,222

DAMP=DAMP/O°9

IF{DAMP-I.01)226,223,223

DAMP=I,

GO TO 226
IF(DAMP-0,ll)226,225,225

DAMP=0°9*DAMP

DO 227 J=I,L

PHIS(J)=PHISO(J)*(I.-DAMP)+PHUS(J)*DAMP

GO TO (228,230),KP

CALL TFC(PHII,NC,2)

IF(NC}483,483,230

PHIIO2=PHIIO

PHIIO=PHI(1)

SUM=O.

GO TO (232,706),KP

CALL TFC(PHII,NC,4)

TCO(LF)=TC{LF)

TC(LF}=TCP(LF)

14S



232 DO 233 J=I.L
SUM=SUM+ABSF((PHI(J)-PHIS(J))/PHII-le)

PHI(J)=PHIS(J)+PHII
233 PHISO(J)=PHIS(J)

234 ERP=H*SUM/DAMP

235 CALL CLOCKT(TN)

TEL_TN-TI

710 GO TO (236t711)_KP
711 IF(O,lO*EPS-ERPI712,713p713
71Z M=M+1

GO TO 240
713 CALL TFC(PHIItNCt3)

DO 714 J:LFtL

714 TCS(J)=TCP(J)

GO TO 742
236 IF(TEL-O,70)237,237_238
237 IF(O,5_EPS-ERP)2kO.250t250
238 IF(5,_EPS-ERP)240.2509250
240 GO TO (241.242t2_3),M4
241 IF(TEL-loOO)243t243,245
242 IF(N -MNI-2_(KP-1)*NNI)243t2h5t245
243 N=N+I
715 IF(N -MNI)210t716t210

716 IF(M7-1)2109783_210
245 WRITE OUTPUT TAPE 3_103_N_TEL

RETURN

250 CALL TFC(PHIltNC_3)

252 DO 253 J=I,L

PHIIN(J)=PHI(J)
253 TC(J)=TCP(J)

SET UP PRINT FOR TAU=O
260 K=O

TAU=O,
TAUO=O,

TCK=TC(LF)

FORFAC=O,I
DETERMINE AND RECORD OVERPOTENTIAL TREND

IFIPHIINILF)-PHISS(LF))261_2629262

261 TND=+I,
r__ TO 300

262 TND=-lo

PRINT TIME STEP RESULTS

300 WRITE OUTPUT TAPE 3tlO6_TAU

BINARY TAPE OUTPUT (OPTIONAL)

620 IF(MN)301,301t621

621 WRITE TAPE 8.TAU

DO 622 J=LITtL.INT

622 WRITE TAPE 8pTC(J)tPHI(J)_(C(J.I).I=I.NC)

301 GO TO (303t302)tM3

302 WRITE OUTPUT TAPE 3tIOStTELtN
303 WRITE OUTPUT TAPE 3tIOg.(CH(1).I=ItNC)

DO 311 J:LI.L_MP

DO 304 I=I,NC

304 OC(1)=C(J_I)

GO TO (3059309)tM3

305 DO 307 I=I_NC

IF(C(J,I)/G(1)-CIGNOR)306_306_307

30b OC(1)=0,

307 CONTINUE

IF{TC(J)-I0.*CIGNOR)3OBt3OBt30?

IZ19



308 TCOPJ=O,
GO TO 310

309 TCOPJ=TC(J)
310 Y=FLOATF{J-1)*H-DELTA
311 WRITE OUTPUT TAPE 3tlI09YtTCOPJ,PHI(JIt(OCII)gI=IgNCI

INITIALIZE TIME STEP CALCULATIONS
320 KEY=I

KINIT=I
KmK÷I

N-I

MC='0

KP=I

ERR:0,

DAMP=DAMS

CALL CLOCKT(TI)

321 IF|K-I}322t3229330

CALCULATE TIME STEP TERMS

322 S=H*H/OT
DO 323 I=ltNC
FL(I)=S/P(I)

323 FLKII}=FLII)
WF=0,5

CALL TFCIPHIltNCol)
DO 327 J=2*L
DO 325 I=ltNCM

FOR INITIAL TIME STEP

325 FK(JtlI=(T(1)-Z(1)*T4*G(1))*B|J)-2,*FL(1)*G(I}
GO TO (326_327)_KMP

326 FKP(J}=-Tk*B(J)-2,*FL(NC)/Z|NC}
327 CONTINUE

GO TO 350
CALCULATE TIME STEP TERMS FOR SUSEQUENT "rIME STEPS

330 CALL STEP(TDTMt2)

331 DO _34 J:2tL

DO 334 I=I_NCM

IF(C(J,I)/G(1)-CINSIG)334p334,332
332 S:-C(J_I)/FK(Jtl)

TDT=TD(1)*(S+2,*FL(1)*S*S)
IF(TDTM-TDT)33493349333

333 TDTM=TDT

334 CONTINUE

IF(ABSF(TC(LF)/TCK-1,)-O,2}335t335p336
335 CALL STEP(TDTM93)

GO TO 338
336 CALL STEP(TDTMt4)
336 S:H*H/DT

DO 339 I:IpNC

FLK(1)=FL(I}

339 FL(1)=S/P(1)

340 DO 349 J=2tL
DO 345 I=lgNCM
IF(C(J,I)/G(1)-CINSIG)34It341t344

341 IF(C(J,I}-I,OE-35)342,342,343
342 FKIJ,I)=-2,*C(Jtl)*FL(1)

GO TO 345
343 FKIJpI):-2,*FLII}*C(J_I)*SXPF(FK(Jtl)/(C(J,I)*FL{I),)+

i 2,*FLK(1)/FL(I})
GO TO 345

344 FK(JtI)=-FKI, J,I)-Z,*(FL'II)+FLK(1))*C(Jgl)
345 CONTINUE

GO TO (346,349)oKMP

150



3_6 FKP(J)=-FKP(J)-Ze*(FL(NC)÷FLKINC))*C(JtNC)/Z(NC)
349 CONTINUE

ESTABLISH STARTING ESTIMATES OF PHI FOR TIME STEP
350 TAU=TAU+DT

TCK=TC(LF)
DO 35Z J=ltL

351PHILT(J)=PHI(J)
355 FORS=FORFAC*FLOATF(KFLD-1)

DO 359 J=ltL
IF(J-LF)356p3S6o357

356 FORM=FORS
GO'TO 358

357 FORM=FORS*ITC(J)/TC(LF)+FLOATFIK-1))/FLOATF(K)
358 PHI(J)=PHILT(JI*(Z.-FORM)+PHI$S(J)*FORM

PHIS(JI=PHI(JI-PHI(I)

359 PHISO(J)=PHIS(J)

CONDUCT SOLUTION OF EQUATION SYSTEM FOR TIME STEP

START ITERATION WITH PHI VALUES FROM LAST ITERATION

400 DO 401 J=2,LM

DP(J)=PHIS(J+I)-PHIS(J-I)

401DP2(J)=PHIS(J+II+PHIS(J-1I-2.*PHISIJ)

DR2(L)=2.*(PHISILM)-PHIS(L))
FIND NEW VALUES FOR CIJ,I) FOR I NOT NC

DO 429 I=I,NCM

IF(ABSF(T(1)I-I.E-20)410,410,402
402 WF=(I.+Z(1)*DP(LF)/4.)/2.

CALL TFC(PHII,I_I)

GO TO (403p405I,KFLD

403 GO TO (404,410),KMP

404 IF(N-1)410t4089406

405 IF(N-MNI/2)410t408,406
406 DO 407 J=2tL

A(J)=(A(J)+AO(J_I))/2,
B(J)=(B(J)+BO(J_I))/2,
AO(JtI)=A(J)

407 80(J,I)=B(J)
GO TO 410

408 DO 409 J=2,L

AO(J,I)=A(J)

409 BO(J,I)=BIJ)

410 DO 411J=2,LM

S= Z(1)*DP(J)/4.

QM(J)=I.-S

411QP(J)=I.+S

S=2.*FL(1)+2.

IF(IR*IP)421t421t412

412 IF(I-IR)413,414,413

413 IF(I-IP)421,414,421

414 DO 415 J=2,L
Q(J)=Z(1)*DP2(J)-T(1)*A(J)-$

R(J)=FK(J,I)

415 B(J)=-T(1)*B(J)

iF(I-IR)417t416,4i7

416 CALL PDIAG(IIL,G(IR).,U,I)

GO TO 429

417 CALL PDIAG(I,L,GIIP),U,2)

DO 420 J=I,L

IF(U(J))418,418,419

418 C(J,IR)=O.

GO TO 420
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419 C{J,IR):U{J)

420 CONTINUE

CALL PDIAG(I,L,G(IP),U,3)

GO TO 423

42I DO 422 J=2,L
Q(Ji=Z(1)*DP2{J)-T(1)*A(J)-S

422 R{J):FKiJ,I)+T{I)*B{J)

CALL TDIAG(I,L,G(1),U)

423 DO 428 J=I,L

IF{U{J))424,424,425

424 C{J,I)=O.

GO TO 428

425 C{J,I)=U{J)

428 CONTINUE

429 CONTINUE

FIND C{J,NC) VALUES BY ELECTRONEUTRALITY

430 DO 433 J=I,L

SUM=O.

DO 431 I=I,NCM

431SUM=SUM+C(J,I)*Z(1),

CNCO(J)=C{J,NC) I
C{J,NC)=-SUM/Z(NC)

IF(C(J,NC))432,432,433

432 C{J,NC):O.

433 CONTINUE

440 GO TO (460,4kl),KMP

FIND NEW VALUES OF PHI{J) BY ALTERNATE PROCEDURE

441 DO 443 J=2,L

DC2(J)=O.

DC(J)=O.

DO 442 I=I,NC

DC2(J}=DC2(J)+Z(1)*Z(i)*P(1)*C(J,I)

442 DC(J)=DC(J)+Z{I)*P{I)*{C(J,I)-C(J-I,I))

443 CONTINUE

GO TO (444,447),KP

444 CALL TFC{PHII,NC,2)

IF(NC)483,483,445

445 DO 446 J=I,L

446 PHI{J)=PHII+PHIS[J)

447 CALL TFC(PHII,NC,3)

DO 448 J=LF,L

TCS(J)=TCP{J)

448 CONTINUE

PHUS(1)=O.

CALL INTEG(H,LF,L,CUR)

IF(LF-2)452,450,450

450 DO 451 J=Z,LF

451PHUS(J)=PHUS{J-I)-{TIO*CUR+DC.{J))/DC2[J)

452 DO 455 J=LFP,L

IF((L-J)-((L-J)/2)*21453,453,454

453 CALL INTEG{H,J,L,CUR)

GO TO 455
454 CALL INTEG(H,J,LM,CUR)

CUR=GUR+H*TCS(L)

455 PHU${J)=PHUS{J-I)-(TIO*CUR+DC(J))/DCZ{J)

GO TO 500

FIND NEW VALUES OF PHI{J) BY BASIC PROCEDURE

460 DO 464 J=2,LM

IF(C(J,NC))462,461,462

LA1 DC(J)=O.
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DC2(J)=O, .-
GO TO 463

462 DC(J):(CIJ+I,NCI-CIJ-IPNC)I/CIJtNC)
DC2(J)=(C(J+ZtNCI+C(J-ltNC)I/CIJtNC)-2e

463 S=DCIJ)/4.
QM(J)=I.-S

464 QP(J)=I.+S
IF{C(LtNC))466t465t466

465 DC2(L)=Oo
GO TO _67

466 DC2(L)=2e*(C|LMtNC)/C(LtNC)-le)
467 S=2._FLINC)/Z(NC)

DO 469 J=2tL
Q(J)=-2e
R(J)=-DC2(J)/Z(NC)
IF(C(J,NC))468t469t468

468 RIJ)=R(JI+FKPIJ)/C|JtNC)+S
469 CONTINUE

CALL TDIAG(1PLtOetPHUS)
RESTART ITERATION PROCEDURE WITH NEW ESTIMATES IF

500 GO TO (501,520),KEY
501 DO 502 J:ltL

IF(ABSF(PHUS(JII-TO,)5029502t525

502 PHIS(J)=PHUS(J)

CALL TFC(PHI1,NC,2)

IF|NC)483,483,503

503 LIMIT=O

DO 512 J=itL

PHI(J)=PHII+PHIS(J)

PDS=PHI(J)-PHISS(J)

IF(TND*PDS)505,505,504

504 LIMIT=+I

XSS=ABSF(PDS/PHISS(J))
FSS=I,/(2,+IO,wXSS)

PHI(J)=PHISS(J)+FSS_PDS

GO TO 512

505 IF(LIMIT)507,5079506

506 PHI(J)=PHISS(J)+0,5*PDS

507 PDI=PHIIN(J)-PHI(J)

IF(TND*PDI)509,509,508
508 LIMIT=-1

XIN=ABSF(PDI/PHIIN(J))
FIN=I,/(2,+IO,*XIN)

PHI(J)=PHIIN(J)-FIN*PDI

GO TO 512
509 IF(LIMIT)510_512,512

510 PHI(J)=PHIIN(J)-0,5*PDI

512 PHUS(J)=PHI(J)-PHI(1)
INCREASE OR DECREASE DAMPING ACCORDING TO BEHAVIOR

520 IF(N-I)521,521,523

521 DO 522 J=I,L

522 PHIS(J)=PHUS(J)

GO TO 720
523 DO 524 J=I,L

524 PHIS(J)=PHISO(J)*(Ie-DAMP)+PHUS(J)*DAMP

720 GO TO (530,72I),KP

72I,CALL TFC(PHII,NC,4}

722 IF(M-2)550,550,532
,.

525 GO TO (526t497),KEY
526 GO TO (502,527)tKFLD

PHIIJ)

15_

VALUES DIVERGE

OF TC(J)



527

530

531
_32

725
726
533
534
535
536
537
540

541

542
543
545
546
727
547

550

551

552

CHECK
560
730
731

732
733

734
735

736

f37

738

739
740
742
742

N=I

ERR=O,
DAMP=(DAMP+DAMS)/2,

FORFAC=FORFAC_(1,-FORFAC)-O,01

IF(FORFAC)399,355t355

CALL TFC(PHII,NCt2)

IF(NC}483,483,531
IF(N-2)550t550t532

CA_L TFC¢BMI1,NCt4)
DO 537 J=LFtLtINC
GO TO (533t726)PKP
IF((L-LF)/3+LF-J)537t537t533
IF(DAMP-O,53)535t534t534
IF(ABSFITCP(J)-TC(J))-2,_CIGNOR)537t5379536
IF(ABSF(TCP(JI-TC(JI)-20,*CIGNORI537_537t536

IF((TCP(J)-TC(J)I*(TC(J)-TCO(JII)542t537t537

CONTINUE

DAMP=DAMP/O,9

IF(DAMP-DAMCK)545t5419541

DAMP=O,9_DAMP

GO TO 550
IF(DAMP-O,OI)545t543t543
DAMP=O,9_DAMP
DO 546 J=ttL
PHIS(J)=PHISOiJ)_(1,-DAMP)+PHUS{JI_DAMP
GO TO (547_550)tKP
CALL TFC(PHI19NCt2)
IF(NC)483t483_550
DO 551 J=ItL
PHI(J)=PHIS(J)+PHI1

PHISO(J)=PHISIJ}
CALL TFCIPHIltNC_3}
DO 552 J=LFtLtINC
TCO(J)=TC(J}

CALL CLOCKT(TN)

TEL=TN-TIS

FOR CONVERGENCE OF ITERATIONS FOR THE TIME STEP
IF(N-1)470,4709730

GO TO (5619731)tKP
SUM=O,

ERMAX:O,

DO 735 J:LFtL

GO TO (733t732)tKFLD
TCP(J)=('TCP(JI+TC(J))/2,

ERR=ABSF(TCP(J}-TC(J))

SUM=SUM+ERR
IF(ERR-ERMAX)735_735t734

ERMAX=ERR

TC(J)=TCP(J)

GO TO (737t736)gKFLD

ERR=ERR/tO,

ERMAX=ERMAX/IO,
ERR=H'SUM

IF(EPS-ERR/DAMP}738_739_739
M=M+l

GO TO 472
IF(IO,*EPS-ERMAX/DAMPI7389740_740

DO 741J=LF_L
TCS(J)=TC(J)
CALL INTEG(HtLFtLtCUR|

15



743
744
745
f/46

747

748
750

751

752

753

754
760

761
770

771

561

562
563
564

570

571

572

579

574

575

576

577

578

580

581

582
583
585

GO TO (744,743),KINIT
IF(ABSF(CUR-1.)-O,l_EPS)77097459745
IF(ABSF(CUR-1.)-EPS)770t7459745
IF(CUR-1.)746t770t747
INDP=-I
GO TO 748

INDP=+I

IF(IND+INDP)7509760t750

IND=INDP "_
PH|ILmPHZl
IF(IND)751,751t752

PHIl=PHIl+DELPHI
GO TO 753

PHIl=PHIl-DELPHI

CURL=CUR
M=I ............."

DAMP=I=
MC=MC+I

GO TO (400,210),KINIT

PHII=PHIIL+(Io-CURL)*(PHII-PHIIL)/(CUR-CURL)

DELPHI=O.I_DELPHI _-_.
IND=O -"
MC=MC+I
M=I
DAMP=I.

GO TO (400,210)gKINIT _
M=O _

KP=I

DAMP=l.
GO TO (585,252),KINIT

ERMAX=O.

SUM=O.

DO 578 J=LF,L

GO TO (564,562),KFLD
IF(N-MNI/2)564,563,563

TCP(J)=(TCP(J)+TC(J))/2,

ERR=ABSF(TCP(JI-TC(J))

SUM=SUM+ERR

.DIV=MAXlF(ABSF(TCP(J))tABSF(TC(J)))
GO TO (571,573)tKTYPE

IF(ABSF(TCP(J)I-lO._CIGNOR)572tS729574
IF(ABSF(TC(J))-lO.eCIGNORI578t5789574
DIV=MAX1F(1.tDIV)
ERR=ERR/DIV
IF(TCP(J)+CIGNOR)575,576,576
ERMAX=I.
GO TO 578

IF(ERR-ERMAX)578t578t577

ERMAX=ERR

TC(J)=TCP(J)

ERR=H'SUM

EPP=EPS

GO TO {582,580),KTYPE

IF(N-MNI)582,582t581

ERMAX=ERMAX/IO.
REV=I.+9.*MINOF(2*(N-MNI),MNII/FLOATF(MNI)

EPP=REV*EPS
IF(EPP-ERR/DAMP)472,S83,583
IF(EPP-ERMAXIDAMP)472_S851585

IF(LFM-I)596,586o586

155



586 DO 587 J=I,LFM 156

587 TC(;J)=O,

DO 590 I=I,NCM

IF(V(i))5909590,588

588 DO 589 J=LFtLFP

IF(C(J,I)/G(1)-CINSIG)591,591_S89
589 CONTINUE

590 CONTINUE
GO TO 598

591 GO TO (592,593,592)9M1
592 WRITE OUTPUT TAPE 39111ti

RETURN
593 GO TO (594_595)gKEY
594 WRITE OUTPUT TAPE 39106,TAU
595 WRITE OUTPUT TAPE 3,11191

GO TO (399_180),KEY

CONVERGENCE OF ITERATION PROCEDURE - GO TO CHECK FOR STEADY STATE

596 GO TO (360t170)_KEY

470 DO 471 J=LF,L

471TC(J)=TCP(J)

472 GO TO (480,473),M2
PRINT ITERATION SUMMARY (OPTIONAL)

473 WRITE OUTPUT TAPE 3,101,TAUtNtTEL_ERR_D_,,"v
WRITE OUTPUT TAPE 3,1029(TC(J)tJzLFpL_ZNL_

CHECK FOR EXCEEDING PROGRAM TIME LIMIT
480 GO TO (481,482_485),M4
481 IF(TEL-TML)485_485,483
482 IF{N-MNI-2*(KP-1)*MNI)4859'483,483
483 WRITE OUTPUT TAPE 3_107tTAU,N,TEL_ERMAX

WRITE OUTPUT TAPE 3,109t(CH(I)tI=I_NC)
DO 484 J=LItL,MP
Y=FLOATF(J-1)*H-DELTA

TERMINATE CALCULATIONS FOR EXCESSIVE ELAPSED TIME (OR ITERATIONS)

484 WRITE OUTPUT TAPE 3,IIO_Y_TCIJ)_PHI(J)o(C(JtI)pI=ItNC)

GO TO (370_399),KEY
COMMENCE ANOTHER ITERATION

485 N=N+I
775 GO TO (776,400),KP

776 GO TO (780,490),KEY

CHECK FOR VERY HIGH PHI ESTIMATES - RESTART WITH LOWER ESTIMATE IF HIGH

490 IF(N-MNI/3)491_493,491

491 IF(N-MNI)492,499,492

492 IF(N-(3*MNI)/2)400,4989400

493 LFH=LF+(L-LF)/2

DO 495 J=LFtLFH,INC

IF(TC(J}+l,0)49694949494

494 IF(TC(J)+O,I)4979495,495

495 CONTINUE

GO TO 780

496 PHIFAC=O,3_PHIFAC

GO TO 161

497 PHIFAC=O,9*PHIFAC

GO TO 161

498, IF(TC(LF)-TCR)497,780,780

499 TCR=TC(LF)

780 IF(N-MNI)400,781,400

781 IF(MC-I)782,400,400

782 IF(M7-1)783,784_783
783 IF(M7-3)400,784_400
78a IND=O



MC=I
M=I 157
KP=2
PHIl=PHI(l)
IF(A_SF(PHI1)-l,I7859785,?Bb

785 IF(ASSF(PHI1)-O,l|788,788,787
786 DELPHI=l,

GO TO 789
787 DELPHI=O,1

GO TO 789
788 DELPHI=O,OI
789 DELPHI=DELPHI*PN/ABSF(PN)

GO TO (7909210),KINIT
790 GO TO (79194001_KEY
791 DELPHI=O,I*DELPHI

GO TO 400
CHECK FOR APPROACH TO STEADY STATE

360 CALL CLOCKT(TN)
TEL=TN-TI

DO 366 J=LFtLtINC

IF(ABSF(TCS$(J)I-lO,*CIGNOR)36193619362

361 IF(ABSF(TC(J))-lO,*CIGNOR)3669366_380

362 FACTOR=LOGFITCSS(J))
IF(FACTOR)3639363,364

363 ADEV=(I°-FACTOR+FACTOR*FACTOR/5Oe)*DEV
GO TO 365

364 ADEV=DEV/FACTOR
365 IF(ABSF(TC(J)ITCSS(J)-l,)-ADEV)36693669380

366 CONTINUE

STEADY STATE REACHED - PRINT STEADY STATE RESULTS

WRITE OUTPUT TAPE 3,108PTAU

370 WRITE OUTPUT TAPE 39104

630 IF(MN)371,3719631

631 TAU=-I,
WRITE TAPE 8,TAU

371 GO TO (3739372),M3
372 WRITE'OUTPUT TAPE 3,105,TELStNS

373 WRITE OUTPUT TAPE 391099(CHIII_I=IgNC)

DO 379 J=LI,L,MP

GO TO (374_378)9M3
374 DO 376 I=I,NC

IF(CSS(J,I)/G(1)-CIGNOR)375_3759376

375 CSS(J,I)=O,
376 CONTINUE

IF(TCSS(J)-lO.*CIGNOR)37793779378

377 TCSS(J)=O,

378 Y=FLOATF(J-1)*H-DELTA

379 WRITE OUTPUT TAPE 3,1109YgTCSS(J)gPHISS[JIg(CSS(Jgl)gI=lgNC)

RETURN
CHECK FOR FAILURE TO REACH STEADY STATE AT REASONABLE TAU

380 IF(500°WDTI-TAU)381,3909390

381 GO TO 483
390 GO TO (392,391),M3

START NEW TIME STEP
391IF(K-(K/MK)*MK}30093009310
392 IF(TAU-TAUO-DTI*ELOATF(MK)|3109393,393
393 TAUO=TAU

GO TO 300
RETURN TO MAIN PROGRAM FOR NEW CASE

3Q9 RETURN
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01 SUBROUTINE INTEG(H,JIgJF,QU}

SUBROUTINE FOR INTEGRATION BY 51MPSONS

DIMENSION UI250)gDUM(500)

COMMON DUMtU

02 SUMI=O.

SUM2=O,

JIP'JI÷_
JIPZ=JI+2

JFM=JF-I

JFM2=JF-2

04 DO 05 J=JIP_JFMt2

05 SUMI=SUMI+UIJ)

06 DO O? J=JIP2,JFM292
07 SUM2=SUM2+UIJ)

08 QU=(U(JI)+UIJF)+4,*SUMI+2.*SUM2)*H/3*
RETURN
END

158

RULE - 16 OCT 62 -E A GRENS

03

04

05
06
08

09

Ol SUBROUTINE TDIAG(JIgJF,UIPU)

SUBROUTINE FOR SOLUTION OF SPECIAL TRIDIAGONAL MATRICES

26 NOV 62 - E A GRENS

DIMENSION QM(250),Q(250)gQP(250)_R(250),W(250)gRS(250),U(250)t
1 DUM(IO00}

COMMON DUM_QMtQtQPgR
02 JIP=JI+]

JFM=JF-I

JFQ=JF-JI

W(JI)=O.

RS(JI)=UI

DO 05 J=JIP,JFM

S=Q(J}-QM(J)*W(J-I)

W(J}=QP(J)/S

RS(J)=(R(J)-QM(J)*RS(J-I))IS

U(JF)=(R(JFI-2,*RS(JFMIII(Q(JFI-2,*W(JFMI}

DO 09 JP=ltJFQ
JQ=JF-JP
U(JQ)=RS(OQ|-W(JQ)_U(JQ+ll
RETURN
END
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C

159
Ol SUBROUTINE PDIAG(JI,JFtVI,UgMODE)

SUBROUTINE FOR SIMULTANEOUS SOLUTION OF TWO LINEARLY LINKED

TRIDIAGONAL MATRICES (2) 18 JUN 63 - E A GRENS

DIMENSION QM(250)tQMR(250}_Q(250)gQR(250_gQP(250)_QPR(250}tB(_50),

1 BR(250}tR(250)_RR(250)tUI250)tV(250)gA(250)gDUM(500)
COMMON AtBgDUMtQMtQgQPtR

02 JIP-JI+I

JFM-JF-I

JFQ=JF-JI
03 GO TO (IOt2Ot30),MODE
10 U(JI)=VI

UI=Vl

11 DO 12 J=JIPtJF

QMR(J)=QM(J)
QR(J)=Q(J)

QPR(J)=QP(J)

BR(J)=B(J)

12 RR(J)=R(J)

RETURN

20 V(JI}=VI

QPR(JI)=O,

QP(JI)=O,

BR(JI)=O,

B(JI)=O,

RR(JI)=UI
R(JII=VI

QMR(JF)=2,

QM(JF)=2,

21 DO 22 J=JIP,JF

DA=I,-BR(J-I)WB(J-1)

AR=QMR(J)/DA

ZR=-AR*BR(J-1)

A=QM(J)/DA

Z=-A*B(J-1)

DENR=QR(J)-AR*QPR(J-1)

DEN=Q(J)-A*QP(J-1)
QPR(J)=QPR(J)/DENR
QP(J)=QP(J)/DEN

BR(J}=(BR(J)-ZR_QP(J-1))/DENR

B(J}=(B(J)-Z*QPR(J-1))/DEN

RR(J)=(RR(J)-AR*RR(J-I)-ZR*R(J-I)I/DENR

22 R(J)=(R(J)-A*R(J-I)-Z*RR(J-ZI)IDEN

QPR(JF)=O,

QP(JF}=O,

24 DO 25 K=ltJFQ
J=JF-K+I

RHR=RR(J}-QPR(JI*U(J+I)

RH=R(J}-QP(J)*V(J+I)

DU=I,-B(J)*BR(J}

U(J)=(RHR-RH*BR(J)IIDU

25 V(J)=(RH-RHR*B(J))IDU
RETURN

30 DO 31 J=JItJF
31U(J)=V(J)

RETURN
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Ol SUBROUTINESTEP(TDTM,MODE)
SUBROUTINEFOR CALCULATION OF INITIAL TIME STEP AND FOR TIME STEP
MODIFICATION (FORM 3) - 3 JUL 63 - E A GRENS

DIMENSION Z(5),VI5),GI5),P(5),DUM(3750),DUM2(B),DUM3(5}

COMMON DUM,DUM_tZgV_P_G_BETA,DELTAoDT,EPStDEVtC|N$IGtDTI,DUM3_

IR_IP,NtMToCIGNOR
02" GO TO (10t20,30t40)gMODE
10 IF(IR)16916t14
14 DT=G(IR)/(5,0*V(IR)*BETA)

15 IF(DTI-DT)16tSO,50

16 DT=DTI

GO TO 50
20 TDTM=IO,*DTI

GO TO 50
30 IF(TDTM-DT)32,32931
31DT=DT+O,5*ITDTM-DT)

GO TO 50
32 DT=TDTM

GO TO 50
40 IF(TDTM-DT)41,41,42

41DT=TDTM

GO TO 50

42 IF(DT-DTI)43,43944

43 DT=DT
GO TO 50

44 DT=DT-O,5*(DT-DTI)

50 RETURN

END
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C
C
C

Ol SUBROUTINE TFC(PHII,I,MODE)

SUBROUTINE FOR CALCULATION OF OVERPOTENTIAL-TRANSFER CURRENT

RELATIONSHIPS FOR REDOX POLARIZATION (FORM _)

18 JUN 63 - E A GRENS

02 FORMAT(44HOOVERPOTENTIAL LALCNLAIION DOES NOT CONVERGE)

DIMENSION Z(5)tV(5)gP(5),G(5)tC(250oS)tPHIS(250)tPHI(250),

I TC$I250)tTCP(2_O),A(250)_B(2_0)tCR(2_01_CP(250)oDUM(_000)
COMMON A,BtTCS,TCP,DUMtPHIS,PHItC,ALFA,H_LFtLgNC,PN,PCtPEtZ,VtPpG,

I BETAtDELTAtDT,EPStDEVgCINSIG,DTItlNC,LFMgLFPtLIgWF,IR,IPpN,M7,

2 CIGNOR,KTYPE,KEYtKFLDpKINITgPHIFAC

03 GO TO (06,04),KEY

06 GO TO (70,04),KINIT
04 IF(N-I)05,05970

05 T2=ALFA_PN

T3=(ALFA-Ie)_PN

60 TO (07,09)pKTYPE

07 DO 08 J=LF,L

08 CP(J}=O,

TP=O,

GO TO 85
09 IFilP)80,80,82

80 DO 81 J=LF,L

81CP(J}=PC
GO TO 85

82 TP=PC/G(IP)
85 IF(IR)86,86,88

86 DO 87 J=LF,L

87 CR(J}=PC

GO TO 70
88 TR=PC/G(IR)
70 GO TO (77,79_79,79)tMODE

77 IF(IR_IP)71,71_78
78 IF(I-IP)IO,IO,99

79 IF(I-I)71,90,71

71 GO TO (74,99),KTYPE

99 IF(IP)74,74,72

72 DO 73 J=LF,L

73 CP(J)=TP_C(J,iP)

74 IF(IR)90,90,75

75 DO 76 J=LF,L

Io CR(J):TR_C(J,IR)

90 GO TO (10,20,30,40),MODE
10 DO 11 J=I,LFM

A(J)=0,

11B(J)=0,

IF(I-IR)15,12,15

12 DO 14 J=LF,L

A(J)=TR_EXPF(T2*PHI(J))

IF(IP)13,13,91
91B(J)=-TP_EXPF(T3*PHI(J))

GO TO 14

13 B(J)=-CP(J)_EXPF(T3_PHI(J})

14 CONTINUE

A(LF)=WF*A(LF)

B(LF)=WF_B(LF)

RLTURN

15 IF(I-IP)18,16,18

16 DO 17 J=LFtL

A(J)=-TP*EXPF(T3*PHI(J))
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92 B(J)=TR_EXPF(T2_PHI(J))
GO TO 17

93 B(J)=CR(J)_EXPFIT2_PHI(J))
17 CONTINUE

A(LF)=WF_A(LF)
8(LFI=WF#BILFI
RETURN

18 DO 19 J=LF_L
A(J)=0,
B(J)=CR(J)_EXPFIT2_PHI(J))-CP(J)_EXPF(T3_PHI(J))

19 CONTINUE

B(LF)=WF_B(LF)

RETURN

20 GO TO (21,25),KTYPE

21 DO 22 J=LF,L
22 TCS(JI=CR(J)*EXPF(T2*PHIS(J)|
23 CALL INTEGIH,LF_LgQT}
24 PHII=-LOGF(OT)/T2

RETURN
25 DO 26 J=LF_L
26 TCS(J)=CR(J)*EXPF(T2*PHIS(J})

CALL INTEG(HtLFtL_QF)
27 DO 29 J=LF,L
29 TCS(J}=CP(J)*EXPF(T3*PHIS(J))

CALL INTEG(H,LF*L_QR)
60 IF(ABSF(ALFA-O.5}-O.l}61.61.63
61PHII=2.WLOGF((1.+SQRTF(1.+4._QF*QR))/I2._OF))/PN
62 IF(ABSF(ALFA-O.5)-l.E-06)50,50,64
63 PHII=LOGF(QR/OF)/PN
64 NP=O
65 NP=NP+I
66 S2=QF_EXPF(T2_PHI1)

53=QR'WEXPF(T3ePHI1)
PHIIP=PHII-(S2-S3-1.)/(T2_S2-T3*S3)
ERP=ABSF(PHI1P/PHII-1.)

67
"68
69

30
32
33
34
35

40
41
5O

PHII=PHIIP

IF(ERP-EPS)50,50,68

IF(NP-30}65,69,69

NC=0
WRITE OUTPUT TAPE
RETURN
IF(LFM-1)34,32,32
DO 33 J=I_LFM
TCP(J)=O.

3,02

DO 35 J=LF,L
TCP(J)=CR(J)*EXPF(T2_PHI(J)I-CP(JIeEXPF(T3_PHIIJ))

RETURN

,DO 41 J=LF,L,INC

TCP(J)=CRIJ}*EXPFIT2_(PHIS(J}+PHI1))-CP(J}*EXPFIT3*{PHI$(J)+P:_II))

RETURN

END
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C
C

I

1

O2

O5

O6

Ol SUBROUTINE PriJhE

SUBROUTINE FOR INITIAL ESTIMAI_ u_ PHi - UNIFORM CONCENTRATION

DISTRIBUTION (CASE 5) - 18 JUN 63 - E A GRENS

DIMENSION Z(5)_V(5)tP(5)gGiS)IRHI(250)_DUMI(2250)_DUM2(2250)_

DUM3(IO)
COMMON DUMloPMItDUM2oALFAoHoLFtLoNCoPNoBCoPEoZtVtPg_PBETAPDELTAI

DUM3tIRtIPgNgM7_CIGNOR_KTYPEtKEYtKFLDtKINITtPHIFAC
T2=ALFA_PN

GO TO (OS_20)tKINIT

IF(IR)06906_07

EC=I,

GIR=G(NC)

GO TO 08

07 EC=I,-BETA_DELTA_(V(IR)/GIIR)-ABSF(PN)/IABSF(Z(NC))+ABSF(Z(IR))

i *G(IRI))/P(IR)

GIR:G(IR)

08 CEF=(1,+O,002WBETA+O,OS_EC_GIR/BETA)/(EC*GIR+0,OO2*BETA

1 +O.05*EC*GIR/BETA)
ETC=(O,4_BETA+BETA_LOGFIBETA)/10°+O°ZeEXPF(-BETA))WCEF+Z,

GO TO (11t12),KTYPE

11SS=PCWEC/ETC

PHIJ=-LOGF(SS)/T2

GO TO 15

12 BS=SORTF(20,WBETA/PC)
PHIJ=2,2_BS/iPNe(1,+O,27wLOGF(IO,WECWGIR)+O,O25wBSWBS))

15 DO 16 J:I,L

16 PHI(J)=PHIJ*PHIFAC

RETURN

20 GO TO (21922)gKTYPE

21PHIJ:-LOGF(PC)/T2

GO TO 15

22 PHIJ=LOGFiII°+SQRTFII,+4,_PCePC))/(2,wPC))/T2
GO TO 15

END
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APPENDIX V.

Steady State Behavior of Cadmium Anode (5N KOH)

The steady state behavior of the cadmium anode example,

as calculated according to the one dimensional model, is

contained in this appendix. For each case treated a graph

is included presenting curves of transfer current distribu-

tion, overpotential, and concentration as functions of

depth in the porous electrode. The non-dlmensional variables

are used and overpOtential is presented as a ratio to its

value, ¢o" at the electrode face (electrode overpotentlal).
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APPENDIX Vl.

Transient Behavior of Cadmium Anode (5N KOH)

The transient behavior of the cadmium anode example,

as calculated according to the one dimensional model, is

contained in this appendix. For each case treated a graph

is included presenting plots, vs. elapsed time since circuit

completion, of transfer current density at Y = 0, electro-

lyte concentration at Y = 0.1, and electrode overpotential.

The non-dimensional variables are used and overpotential

is presented as a ratio to its steady state value.
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APPENDIX VII.

Steady State Behavior of

Ferrl-ferrocyanide Cathode (2N NaOH).

The steady state behavior of the ferri-ferrocyanlde

cathode example, as calculated according to the one dimen-

sional model, is contained in this appendix. For each

case treated a graph is included presenting curves of trans-

fer current distribution, overpotential, and reactant and

product concentrations as functions of depth in the porous

electrode. The ron-dimensional variables are used and

overpotentlal is presented as a ratio to its value, _o' at

the electrode face (electrode overpot_ntial).
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APPENDIX VIII.

Transient Behavior of

Ferrl-ferrocyanlde Cathode (2N Na0H)

The transient behavior of the ferrl-ferrocyanide

cathode example, as calculated according to the one dimen-

sional model, is contained in this appendix. For each case

treated a graph is included presenting plots, vs. elapsed

time since circuit completion, of transfer current density

at Y = 0, reactant and product concentrations at Y = 0.i,

and electrode overpotential. The non-dlmensional variables

are used and overpotential is presented as a ratio to its

steady state value.
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LF
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Nj

NOTATION

English Letters

Coefficient of Cj in overpotential expression

Specific surface of matrix (cm -1)

Term of overpotentlal expression not involving Cj linearly

Concentration of species J (dimensionless) = cj/c_

Concentration of species J (gmol/cm 3)

Concentration of species J in bulk electrolyte (gmol/cm 3)

Diffusion coefficient of species J (cm2/sec)

Symbol for electron

Faraday's constant (96,800 coul/equiv)

Time increment (dimensionless) at step i

Distance increment (dimensionless)

Current density in electrolyte (dimensionless) = i/i*

Current density in electrolyte (amp/cm 2)

,Exchange current density in electrode reaction (amp/cm 2)

Transfer current d.ensity (amp/ore 2)

Current density in electrolyte at pore entrance (amp/cm 2)

Index for space variable Y

Index for time variable T

Boltzmann constant (1.38 x l0 -16 ergpK)

Value of J at Y=l (= (l+A)/h+l)

Value of J at Y=0.(= A/h+l)

Thickness (or half thickness) of porous electrode model(cm)

Symbol for species J

Flux of species J (gmol/cm2-sec)
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n

P

R

r

sj

T

t

uj

V

Y

Y

zj

A

B

E

e

K

vj

Number of Faradays of charge transfered per gmol of

reaction (positive for cathodic)

Porosity

Gas constant

General position vector

Source term for species J (gmol/cm3-sec)

Temperature (°K)

Time (sec)

Mobility of species J (cm/sec-dyne)

Electrolyte velocity (cm/sec)

Distance into porous electrode (dimensionless) = y/_

Distance into porous electrode (cm)

Charge number of species j

Greek Letters

Transfer coefficient in overpotential expression

O

i*_/nFDkC k

O O

cj/c k

Equivalent transfer layer thickness (dimensionless) = 8/$

Equivalent transfer layer thickness (cm)

Electronic charge (1.60 x l0 -19 coul)

0verpotential parameter

Dispersion angle of pore structure

Electrolyte conductivity (dimensionless)

_ g/h 2

Viscosity (poise)

Stoichiometric coefficient of species J



_j

T

¢

¢
0

_..x.-

¢

Ce

X

(.13

J

P

r

Dj/D k

Time (dimensionless) = Dkt/_2

Potential in electrolyte (dimensionless) = F(¢-¢e)/RT

¢ evaluated at Y=0

¢ - ¢ly=.A

Potential in electrolyte (volts)

o (volts)Equilibrium electrode potential at cj

_/_

Tortuosity factor of pore structure

223

Subscripts

Species in electrolyte identification

,Product species

Reactant species

Superscripts

Pertaining to superficial or exterior measured quantities
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